Extreme Performance Through Process Information

Dal Vernon Reising

Incident Avoidance through Proactive Monitoring

Extreme Performance Through Process Information

The Abnormal Situation Management® (ASM®) Consortium

Innovating and Fielding ASM® Solution Concepts

®ASM and Abnormal Situation Management are U.S. registered trademarks of Honeywell International, Inc.

ASM Operator Interface Features

For Proactive Monitoring:

- Integrated Trending
- Integrated alarm management into graphics and navigation tabs
- Multi-level, <u>simultaneous</u> views of increasing plant detail
 - Level 1 Area Overview,
 - Level 2 Unit Summary
 - Level 3 Equipment detail
 - Level 4 Group & Point detail

ASM Operator Interface Features

For Fast Response:

- "Yoked" navigation between display levels
 - e.g., across a Unit summary & its associated equipment detail displays
- Multi-windowing with controlled window management
- Tabbed navigation within a display level

ASM Operator Interface Features

For Fast Response:

- ASM Graphics design
 - e.g., Color-coding only for critical information – like alarms, No 3D graphical objects, etc.

- Right-mouse click access to online documentation
 - e.g., Alarm Objective Analysis documents, procedures, etc.

Operator Interface Case Study

Objective

- Develop a case study to illustrate the potential impact of ASM[®] Consortium Advanced Operator Interface concepts
 - Hypothesis: the ASM style of operator interface improves operator performance for incident avoidance and in abnormal situations

Approach

 Compare operators performance on their units' own highfidelity simulators using:

- Traditional single window operator interface console

versus

- ASM-structured, multi-window operator interface console

The Side-by-Side Comparison

ASM-style Console Simulator

Front View

Equipment Key

G - GUS Workstation Monitor PC - Personal Computer

- E Equipment Pod
- A Alarm Annunciator

Operator Interface Case Study

Traditional, single-window operator displays console

 The console was a mix of US & GUS workstations, with Native window displays

- Displays were classified as a "traditional" design, although these Native displays were of "high quality", i.e., were compliant with many of the recommended ASM interface guidelines
 - half-intensity lines to depict static process piping
 - navigation points at the beginning and ends of flows onto and off pages
 - a general left to right, top to bottom process arrangement,
 - lower salience for less important static text information
- As a comparison these "traditional" displays represent a "better practice" than the industry norm for operating schematics
 - This fact makes for a conservative comparison in this study's performance testing
- This unit's training simulator interface closely matches that of the actual plant

Operator Interface Case Study

ASM-style operator interface console

• GUS workstations using Gus Picture Builder

- There were two 21" monitors per workstation using Safeview
- Key features
 - Multi-window format with controlled window management
 - Multi-level view
 - Level 1 Area Overview, Level 2 Unit, Level 3 Equipment, Level 4 Group
 - Integrated into the console:
 - Trends, online information, navigational support (yoking and focus)
 - Closely follows recommend ASM interface guidelines
- This unit's simulator could be better matched to real plant console
 - Makes for a conservative comparison in the performance testing of this study

Case Study Experimental Design

- The case study involved a two-part test for 2 groups of operators
 - Pre-test Establish if there were any differences in operations and plant experience between the 2 groups
 - Scenario testing Establish if there were any performance difference in incident detection, incident prevention between the 2 interfaces
 - Tested the operators on 4 matching scenarios
- A total of 21 operators:
 - 10 for Traditional;
 - 11 for ASM-style

Case Study Scenarios

- Used 4 scenarios in the operator performance evaluation
 - Looked for scenarios which had similar development time and matching instrumentation
 - Allowed for better isolation of the effect between the operator interfaces on operator performance for each scenario
- The 4 scenarios were
 - A cracked gas steam turbine vacuum problem
 - A cracked gas compressor suction pressure transmitter drift
 - A cracked gas compressor discharge pressure safety valve (PSV) passing to flare
 - A turbo expander bypass valve drift open

Pre-Test Results for differences between Operator groups

- No average differences between the two groups of operators for:
 - Number of years experience as an operator
 - Number of years experience as an operator at this company
 - Number of years experience as a console operator
 - Percent of panel rounds correctly identified

Scenario Results for differences between Interfaces

- Significant difference for **Time** to **Orient** to the problem
 - Overall, the operators using the ASM-style interface were <u>more</u> proactive, orienting to the problem an average of 4 minutes faster
 - For the first scenario with the Traditional console, an alarm rang in which oriented them to the problem faster, but...
 - They didn't solve the problem faster! (see Next slide)

Scenario Results for differences between Interfaces

- Significant difference for Total
 Completion Time
 - The operators using the ASMstyle interface took significantly <u>less time</u> to deal with the event and as a group, were <u>more</u> consistent in doing so!
 - Operators using the ASM-style interfaces completed trials in an average of 10.6 minutes vs.
 18.1 minutes for those using the traditional console (41% improvement)

Scenario Results for differences between Interfaces

- Detecting the event BEFORE the first alarm
 - On average, operators using the ASM-style interface detected an event before the alarm 48% of the time
 - A 38% improvement

Successful completion of the scenario

- On average, operators using the ASM-style interface successfully dealt with the situation 96% of the time
- A 26% improvement

	Interface Type	
	Traditional	ASM
Scenario 2	0%	27%
Scenario 4	10%	82%
Scenario 7	10%	82%
Scenario 8	20%	0%
Mean	10.0%	47.7%

	Interface Type	
	Traditional	ASM
Scenario 2	60%	100%
Scenario 4	70%	100%
Scenario 7	80%	91%
Scenario 8	70%	91%
Mean	70.0%	95.5%

Economic Impact Assessment

- Conducted a Monte Carlo simulation for the Traditional console
 - Used the operator performance improvement values and ranges as input into this simulation
 - Improved solution times
 - Higher solution success rates
 - Generated an annual baseline from 6 years of incident data from the traditional console unit
 - The "assumed" input ranges for the incident data in the Monte-Carlo analysis were supplied by ASM member site's process experts

Economic Impact Assessment

- The total economic impact for the unit with the traditional console (a 1.8 Blb/year ethylene plant) was
 - On average, \$870K USD/year
 - The median (considered most likely) was \$800K USD/year

Future ASM work on Proactive Monitoring

"Span of Control" Overview Displays

- Concept: Operator visually scans for graphical deviations
- Continuously monitors critical variables in context of their limits
- There would be visual indications of the operating envelopes
 - In the equipment graphics, point value indicators, and trends
 - Immediate indication of potential problems
- There would be composite indicators of process and equipment "health"
 - Immediately detect deviation from "healthy" process operation

Future ASM work on Proactive Monitoring

"Span of Control" Overview Displays

Summary Points

- ASM operator interface principles support *Proactive Monitoring* behavior in operators
- This behavior leads to clear performance improvements
- These improvements can be directly translated into economic benefits
- The ASM Consortium continues to work on better interface concepts

