Communication and Coordination Failures in the Process Industries

52nd Annual HFES Meeting

Jason Laberge

Honeywell Advanced Technology Golden Valley, MN

Peter Bullemer

Human Centered Solutions Independence, MN

Stephen Whitlow

Honeywell Advanced Technology Golden Valley, MN

September 25, 2008

Introduction and Motivation

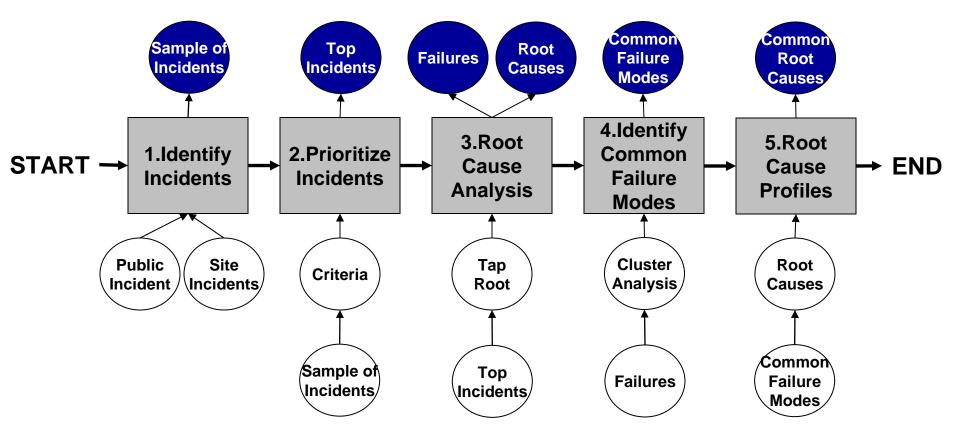
- Process industries (Wikipedia, 2008)
 - ...involve extraction of raw materials, their transport and their transformation (conversion) into other products by means of physical, mechanical and/or chemical processes using different technologies...
 - Examples: refineries, chemical plants, gas facilities

 Communication and coordination breakdowns are an important source of failures in the process industry (Laberge & Goknur, 2006)

ASM Honeywel

- Weak leadership
- Poor control room design
- Closed communication culture
- Deficient work processes
- Situation and work environment constraints

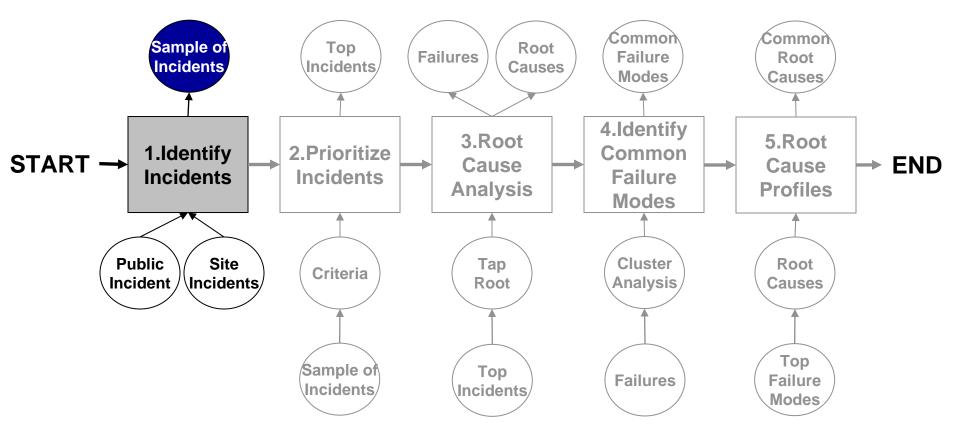
Nature of these breakdowns and their relative frequency is unknown


Research Objective

- Identify common communication and coordination failures and root causes in the process industries
- Analyze incident reports to determine:
 - Failures = what happened, nature of the breakdown in communication and coordination
 - Root causes = reasons why the failure occurred

• Why analyze incident reports:

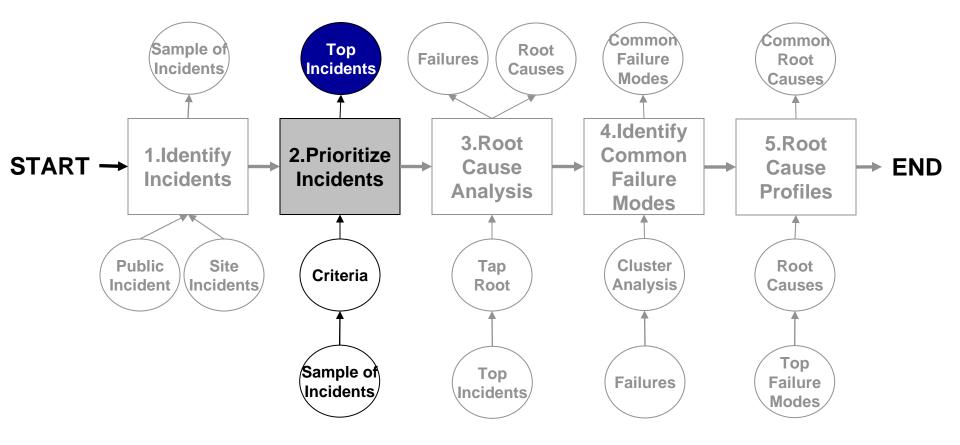
- Incident reports provide a rich description of how failures and root causes contribute to real-life accident
- Precedent in other industries to analyze incident reports for human factors issues (e.g., aviation, transportation)


Research Process - Overview

ASM Honeywell

A systematic research approach was developed

Methods – Identify Incidents

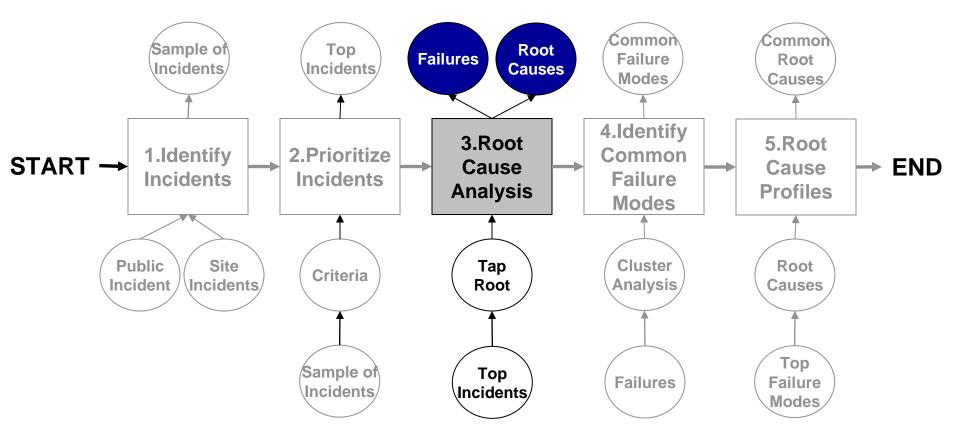


Methods – Identify Incidents

- We could not analyze all the available incident reports
 - Our goal was to identify a sample of incident reports that represent diverse process industries from multiple public and private company sources

- Search criteria:
 - lead to an abnormal situation (i.e., injury, production interruption, equipment damage, environmental release)
 - be described in enough detail so that the sequence of events, conditions, and outcomes could be understood
 - have an identified (documented in the report) or hypothesized (based on our own judgment) communication and coordination failure
- Search results:
 - 32 public incidents
 - 8 site proprietary incidents

Methods – Prioritize Incidents

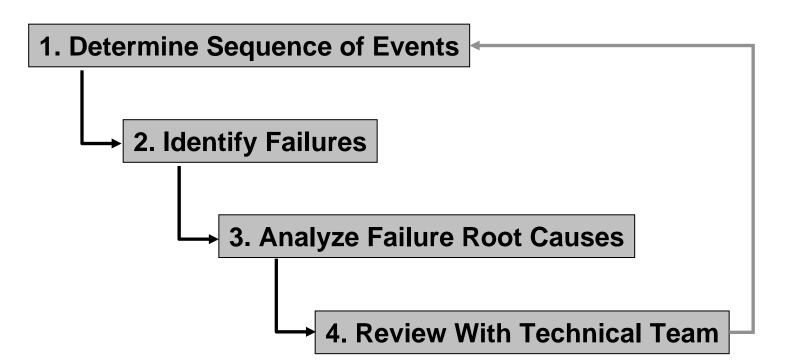


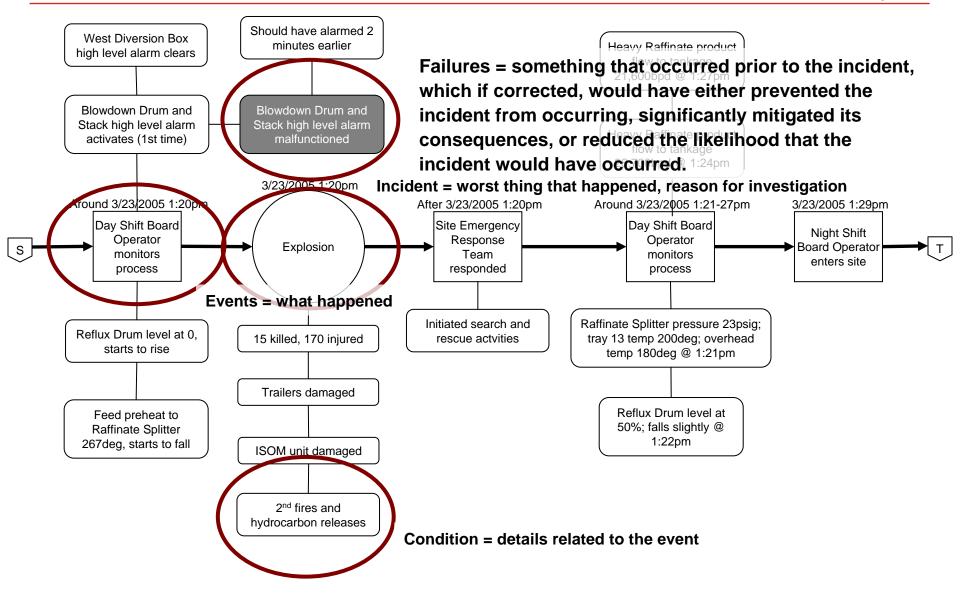
Methods – Prioritize Incidents

 The incidents were subjectively rated by the research team and were approved by industry representatives:

Failure	Detail			
1 = Latent failure	1 = Insufficient detail (website)			
3 = Contributing failure	3 = Moderate detail (case study, digest)			
9 = Causal failure	9 = Complete detail (full incident report)			
Industry	Recency			
1 = General industrial	1 = Before 1990			
3 = Nuclear, Offshore	3 = 1990 to 1999			
9 = Refining, Chemical	9 = Since 2000			

- Based on this rating scheme, 14 incidents (10 public, 4 company proprietary) were selected for analysis
 - This sample size was considered sufficient to establish a <u>preliminary</u> understanding of the basic causes of incidents associated with communications and coordination failures




 TapRoot® (www.TapRoot.com) was used to complete the root cause analysis (Paradies & Unger, 2000)

ASM Honeywell

- We used TapRoot® because it:
 - is a structured approach to incident investigations
 - is based on sound process safety management principles and lessons learned (CCPS, 2003)
 - is systematic and work process driven
 - is robust and well grounded in human factors and systems
 - has credibility in both research and industry settings
 - is generic and not specific to a domain or problem space

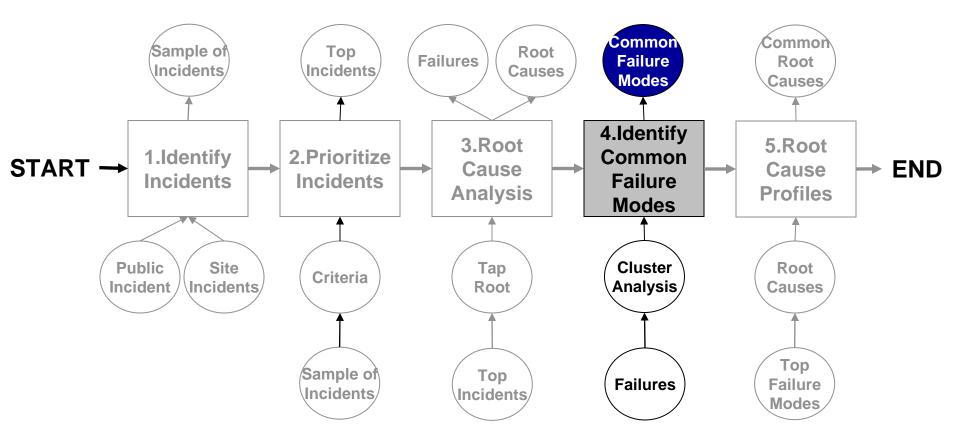
TapRoot[®] is robust for this kind of analysis

 A conceptual model was developed to provide common operational definitions for failures (Laberge, 2008)

ASM Honeywell

- Communication failures are any problem involving the content, type, timing, or medium of communication
- Coordination failures are any problem where two or more people must successfully interact to complete a job

Communication and coordination failures are broad

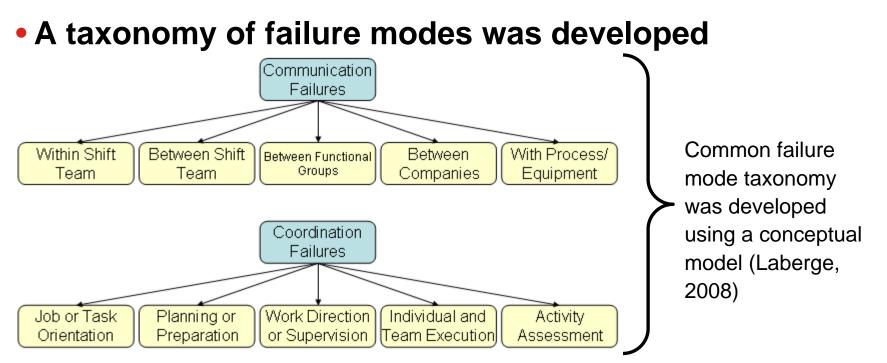

• Each failure was subject to detailed root cause analysis using the TapRoot ® root cause tree

Level	Question	Answer	Result Continue to level 1.1 in "Communication" branch		
1.Communication	If people had communicated more effectively, would the issue have been prevented?	YES, MORE EFFECTIVE COMMUNICATION OF PROCESS SAFETY INFORMATION			
1.1 No communication or not timely	Was an issue caused by failure to communicate?	YES, MANAGEMENT FAILED TO COMMUNICATE PSM INFORMATION TO PERSONNEL	Continue to Level 1.1.1 in "No communication or not timely" branch		
1.1.1 Communication system need improvement (NI)	Was the system inadequate?	YES, EMAIL USED BUT WAS INEFFECTIVE, COMMS DURING MEETINGS AND MEMOS W/SIGN OFF BUT NO PROOF WAS FOUND THAT THIS ACTUALLY OCCURRED	Root cause of failure		
1.1.2 Late communication	Were communications provided too late because events happened too fast to allow time for communications?	NO	Exclude as root cause		
1.2 Turnover NI Did incorrect, incomplete, or otherwise inadequate verbal or written turnover of information during shift/watch relief cause or fail to prevent an error?		NO	Do not proceed down branch		

 Two investigation team members reviewed all the incident reports, SnapCharts®, list of failures, and root cause analyses

- The two-person team discussed differences of opinion and came to a consensus on the sequence of events, failures, and root causes before analyzing another incident
- This consensus process provided a quality control mechanism to increase the consistency of the results and the reliability of the findings across incidents

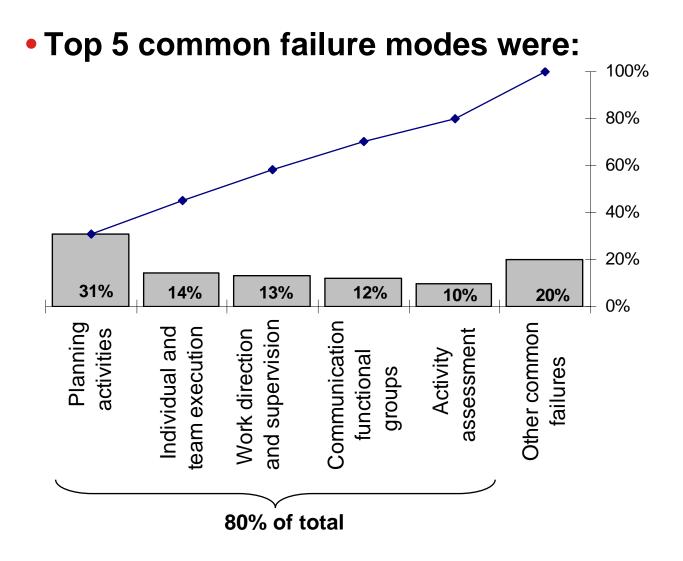
Methods – Identify Common Failure Modes


Methods – Identify Common Failure Modes

ASM Honeywell

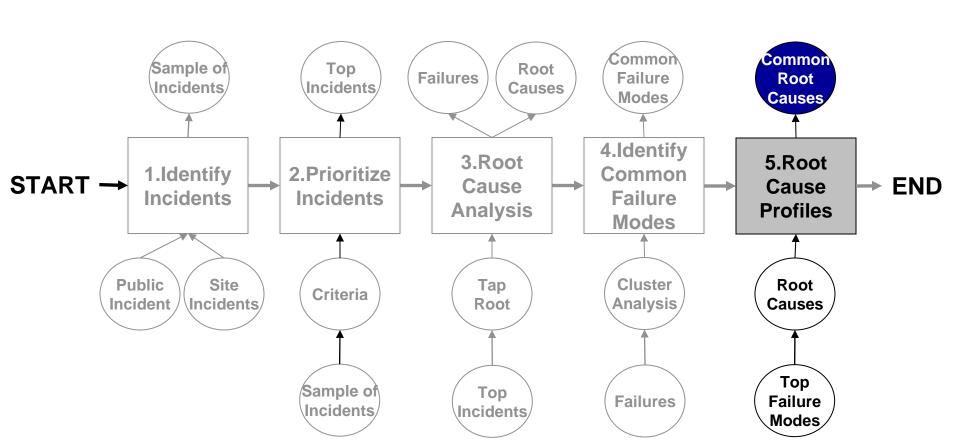
- 207 individual failures from all the incidents were clustered into common failure modes
 - Common failures highlight common problems that were shared across incidents
 - Common failures represent the shared problem elements that can be used to develop solutions to prevent future incidents

Common failures = systemic problems for the industry


Methods – Identify Common Failure Modes

- Four team members independently clustered the individual failures
 - Average agreement (inter-rater reliability) was 70%
 - The team discussed where there was disagreement and came to a consensus before proceeding

Results – Common Failure Mode Analysis


ASM Honeywell

Coordination related failures are more common

Methods – Identify Common Root Causes

Honeywell

Results – Common Root Causes

Common root causes show why failures occurred across incidents

ASM Honeywell

Significant contributor (>15%) Substantial contributor (>10%) Moderate contributor (>5%) Not a contributor (0%)	Combined for Top 5	Planning activities	Individual and team execution	Work direction and supervision	Communication between functional groups	Activity assessment
Root Cause	%	%	%	%	%	%
No SPAC	12.2%	20.4%	8.6%	7.8%		15.2%
Crew teamwork needs improvement	11.1%	7.4%	15.5%	17.6%	6.5%	12.1%
SPAC not followed	8.8%	7.4%	19.0%	7.8%		9.1%
No communication	8.4%	6.5%		5.9%	32.6%	
No supervision	7.4%		12.1%	19.6%		15.2%

SPAC – Standards, Policies, Administrative Controls

Discussion

- Process industry companies interested in addressing the top 5 common failure modes should consider the following causes:
 - Ineffective standards, policies, administrative controls (SPAC)
 - Enforcement, coverage, clarity, and accountability

- Lack of communication

 No communication particularly between management, leaders, and employees; poor communication systems

- Poor crew teamwork

 Not questioning problems, focusing on one problem and losing sight of overall status, person-in-charge leaves problems uncorrected

- No supervision

• Person-in-charge does not provide support, coverage, or oversight

Causes vary; comprehensive solutions are required

- The ASM Consortium is investigating the following solution areas to address the common failures and root causes identified in this project:
 - Team training (CRM-like)
 - Requirements for effective team communication and coordination
 - Best practices for leaders and supervisors
 - Collaboration technologies to support team coordination
 - Effective work processes (example of a SPAC) for team activities like work permitting, incident investigations

Limitations

- Incidents were mostly public from U.S. companies
 - The sample may not fully represent the process industries
 - A new ASM® Consortium study is in progress to expand the sample size

- TapRoot® is a subjective method
 - Developed systematic research approach
 - Mitigated to some degree through consensus building
- Incident reports were the only source of information
 - The consensus building approach and the use of operational definitions for both root causes and common failure modes was a mitigation technique to ensure the analysis was as systematic and objective as possible

Future Research

- Analysis that goes beyond communication and coordination activities to examine operations practices more generally
 - Could identify relative causes for problems more generally
 - May identify additional research areas or solution opportunities
- Compile and analyze near miss incidents
 - A near miss is "...an occurrence in which an accident (that is, property damage, environmental impact, or human loss) or an operational interruption could have plausibly resulted if circumstances had been slightly different" (CCPS, 2003, p. 61)
 - Near miss reporting is a largely untapped source of information on failures and root causes (CCPS, 2003)
 - Other industries (e.g., aviation, medical) use near miss reporting to proactively identify problems and develop effective solutions before incidents occur

- Thanks to the HFES reviewers for their insightful comments
- This study was funded by the ASM® Consortium, a Honeywell-led research and development consortium
- Questions?

www.asmconsortium.org

www.honeywell.com