Functional Versus Schematic Overview Displays: Impact on Operator Situation Awareness in Process Monitoring

Anand Tharanathan

Honeywell Advanced Technology Golden Valley, MN

Peter Bullemer

Human Centered Solutions Lone Tree, CO

Jason Laberge

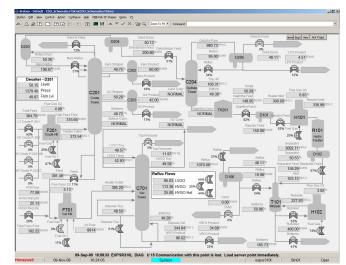
Honeywell Advanced Technology Golden Valley, MN

Dal Vernon Reising

Rich Mclain

Human Centered Solutions Lone Tree, CO Human Centered Solutions Lone Tree, CO

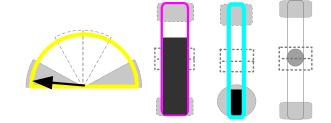
September 28, 2010 54th Annual HFES Meeting


Human Centered Solutions

Helping People Perform

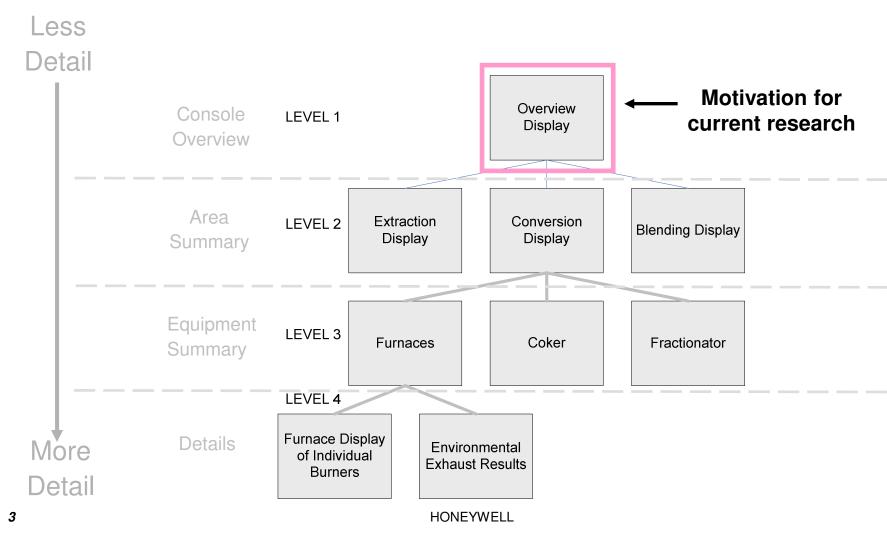
Introduction and Motivation

- Monitoring the console overview display is the primary way operators maintain situation awareness (SA) of process conditions (Bullemer et al., 2008)
 - Most existing displays in practice today use traditional piping-and-instrumentation diagram (P&ID) based schematic displays
 - Shapes for major equipment
 - Process flow lines
 - Numeric indicators for process values
 - Advances in visualization design and cognitive engineering methods have identified ways to improve the display design (e.g., Burns & Hajdukiewicz, 2004, Jamieson & Vicente, 2001, Vicente & Rasmussen, 1990)

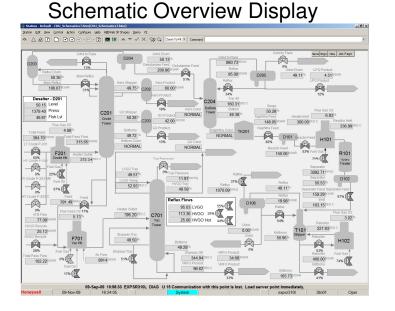


Human Centered Solutions

ASM


Helping People Perform

Honevwell


Introduction and Motivation

 An effective HMI display distributes information across a display hierarchy (Bullemer et al., 2008)

- Evaluate the effectiveness of a console overview display designed to support operator situation awareness during process monitoring activities using (Reising & Bullemer, 2008):
 - Display shapes designed to support qualitative perception of process conditions
 - Display arrangement around a functional organization of process information

Functional Overview Display

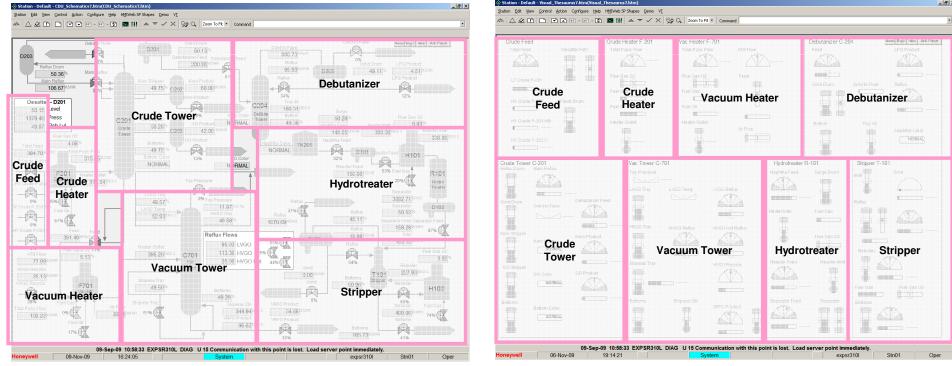
Crude Feed C	ude Heater F-201	Vac Heater	-701		Debutanizer C-20	04	Name Engl Hide Ack
Total Feed Desalter H20	fotal Pass Flow	Total Pass F	ow ATB Flow		Feed		LPG Product
		1	$\lambda = \Delta \nabla$				AD.
	Tue Gas 02	Flue Gas 02	Feed				
LT Crude P-201 (MMC) (MU)		Pide Gas Gz			Ovhd Drum	Ovhid to Flare	Reflux
	uel Gas	Fuel Gas			and and a		172
HY Crude P-202 Flash Drum	uel Oil	Fuel Oil			e e e e e e e e e e e e e e e e e e e		
	Heater Outlet	Heater Outer	Air Flow		Bottom	Tray 40	Naphtha Color
HY Crude P-203 C	s	H.	_ 100		0000		NORMAL
	•	- b				- 8	
Crude Tower C-201 Reflux Drum Main Reflux	Vac Tower C-701			Hydrotreater	R-101	Stripper T-10	01
Renta Diam Main Renta	Top Pressure			Naphtha Feed	Surge Drum	Inlet	Ovhd
		LVGO Temp	LVGO Reflux				
Ovhd Drum Debutanizer Feed	im .		<u> </u>	-	- 1	Refux	- 💼 -
Ovhd to Flare	8008			Heater Inlet	Fuel Gas		
Kero Stripper Kero Product	HVGO Tray	HVGO Reflux	HVGO Hot Reflux	83	Flue Gas O2	l de l	
Kero Color					Pille Gas 02		
					10 CO	Reboiler	270.
GO Stripper	Slopwax Tray		HVGO Recycle	Reactor Feed	Reactor Inlet	144	
GO Color GO Product					8	T =	
					- 8	Fuel Gas	Flue Gas 02
Bottoms	Bottoms	Slopwax Ctrl		Separator Feed	Separator	Bottoms	
Bottom Color	-	100	VRFO Product	SB.		P Z	12
	20110			1.00		1 data 🚛	elles I

HONEYWELL

VS.

Compare <u>Schematic</u> and <u>Functional</u> overview displays

Human Centered Solutions

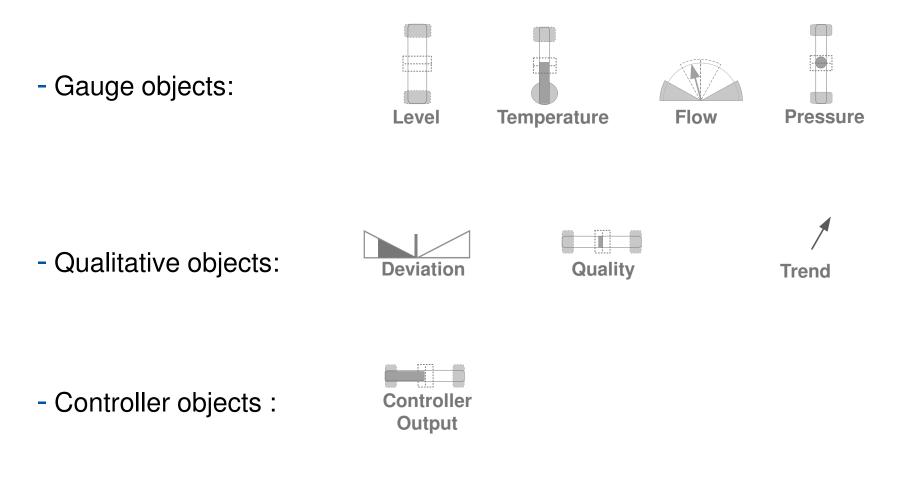

ASM

Functional Overview Display

Helping People Perform

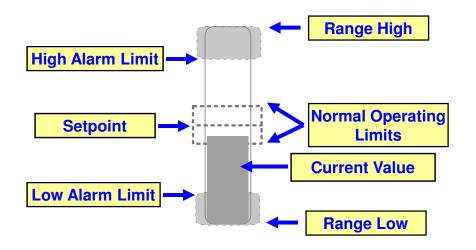
Honeywell

- Variables are the same
- Main equipment areas are the same
- Differences are visualization technique and functional arrangement



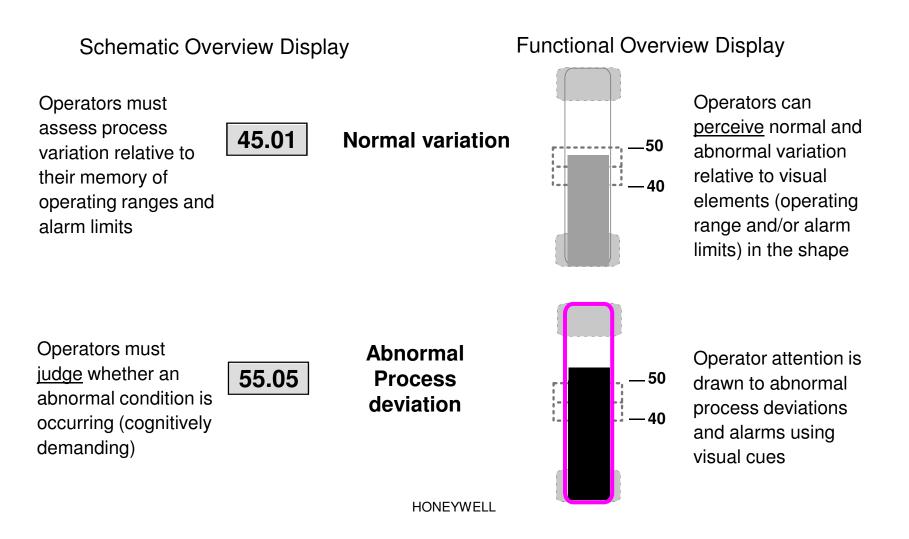
Schematic Overview Display

HONEYWELL

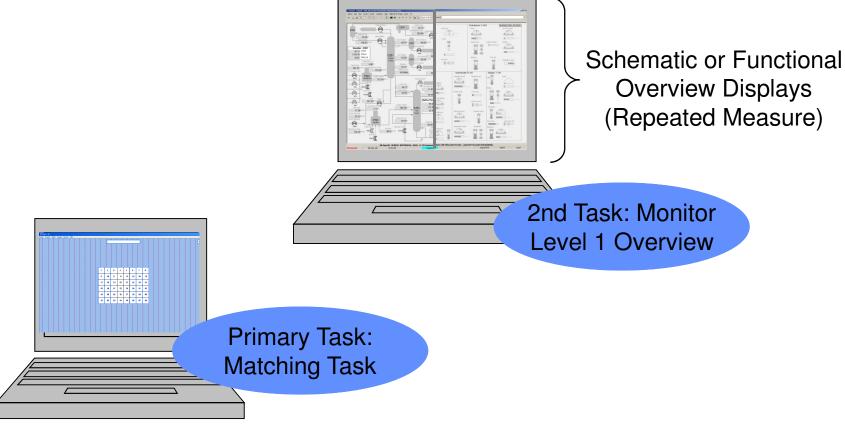

Overview Display Qualitative Shapes

 There are 8 new display objects that were used in the Functional overview display (see Reising & Bullemer, 2008 for design details):

Overview Display Qualitative Shapes


- Information in the new display shapes is presented in such a way that operators can qualitatively perceive:
 - normal operating limits
 - alarm limits
 - how close the process is relative to the limits
 - how quickly the process is moving towards / away from the limits

 Hypothesis: New display shapes should support qualitative perception of process conditions, resulting in improved operator SA while monitoring overview displays


Overview Display Qualitative Shapes

Detecting deviations to variables can be supported in different ways in the Level 1 overview displays:

Dual-Task Setup

- Rationale: Operators rarely monitor without simultaneously doing other critical tasks (e.g., completing standard operating procedures, managing field activity, etc.)

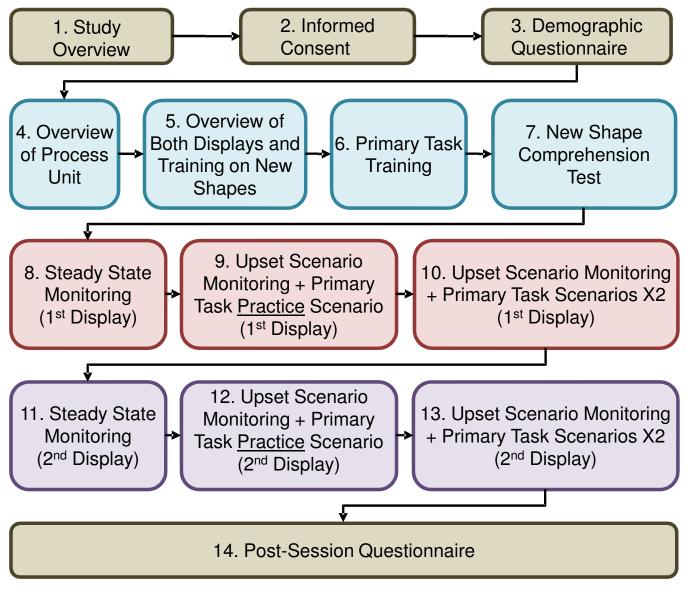
Primary task was a visuo-spatial (flag) matching task:

- Requires similar cognitive processes as console operations activities (Pringle, 2000)
 - Working memory
 - Visual search
 - Attention
- Reduced operator training time compared to a more realistic primary task such as a procedure
- Reduced the complexity and cost of developing the evaluation protocol
- Is a measurable and quantifiable cognitive test

	Iceland							01:10	
1	2	3	4	5	6	7	8		
9	10	11	*	13	14	15	16		
17		19	20		22	23	24		
25	26	27		29	30	31	32		
33	34	35	36	37	38	39	40		
41	42	43	44	45	46	47	48		

Method: Secondary Monitoring Task Human Centered Solutions Helping People Perform

Secondary task was to monitor process scenarios created using a commercial process simulator


- Four scenarios were developed by introducing upsets in the plant
 - Two levels of complexity based on number of process deviations
 - A process deviation was defined as a condition where a process variable changes either from normal to abnormal, abnormal to alarm condition, a low to a low-low alarm, or a high to a high-high alarm, and vice versa
- Short steady state scenarios were also created for reference
- Scenarios were presented as pre-recorded videos on a laptop
 - Operator monitored the videos and were tasked with maintaining awareness of the process deviations

Repeated Measures Design

2 (Display: Schematic, Functional) X 2 (Scenario Complexity: Low, High)

Repea	ated Measures	Counter-Bala	ancing Schem	е	
Complexity Order 1	Low	High	Low	High	
Display Order 1	Schematic	Schematic	Functional	Functional	
Display Order 2	Functional	Functional	Schematic	Schematic	Primary
Complexity Order 2	High	Low	High	Low	for all trials
Display Order 1	Schematic	Schematic	Functional	Functional	
Display Order 2	Functional	Functional	Schematic	Schematic	

Method: Procedure

Participant Demographics

- 18 professional operators from two ASM member refining sites
- All operators were familiar with simulated process plant operations

Demographic Variable	Mean or N	SD or %
Age (years)	42.56	8.48
Current Unit Experience (years)	10.11	8.35
Other Unit Experience (years)	6.11	7.30
Field Experience (years)	6.03	7.04
DCS Experience (years)	6.67	4.80
Computer Experience (hours/day)	4.28	4.17
Normal Vision		
Yes	17	94.4%
No	1	5.6%

HONEYWELL

Method: Performance Measurement

Primary Task

- Total number of correct flags matched during scenarios

Secondary Task

- Operators' SA was measured (Level 1 and Level 2)
 - Detection of process deviations (Level 1 SA) by talking aloud
 - Responding to probes (Level 2 SA) at pre-determined pauses during the scenarios

Human Centered Solutions

ASM

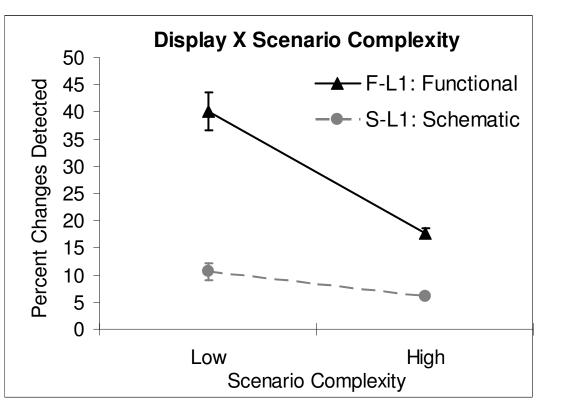
Helping People Perform

Honeywell

Example of the Level 2 SA probes:

When the freeze happened, ATB flow in the vacuum heater was:

- » In normal state
- » In abnormal state
- » In alarm state
- The accuracy of operator responses for Level 1 and 2 was an indicator of situation awareness
 - Accuracy was assessed relative to what actually happened in each scenario video


Human Centered Solutions

Accuracy of talk aloud responses relative to actual process changes that occurred

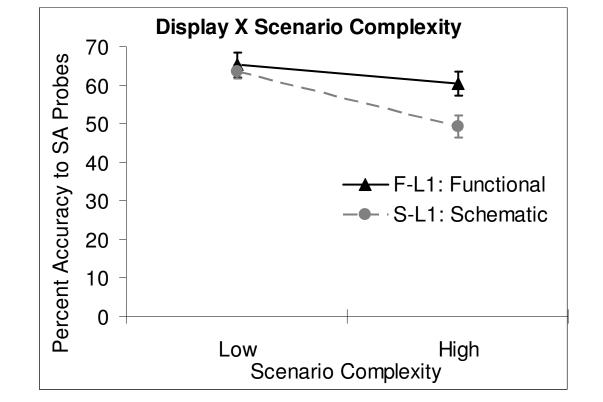
- Significant Main Effect
 - More changes detected using Functional Display (p < .0001)
 - More changes detected during Low complexity scenarios (p < .0001)
- Significant Interaction

16

 Higher relative performance improvement using the Functional display during Low complexity scenario (p < .001)

Helping People Perform

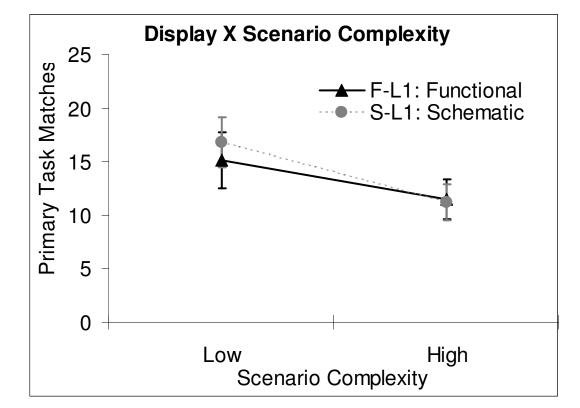
Honeywell


ASM

17

Results: Level 2 SA

Accuracy of responses to probe questions averaged across two pauses in each scenario


- Significant Main Effects
 - More accurate probe responses using <u>Functional</u> Display (p < .05)
 - More accurate probe responses during <u>Low</u> complexity scenarios (p < .004)

Results: Primary Task Flag Matches Human Centered Solutions ASM

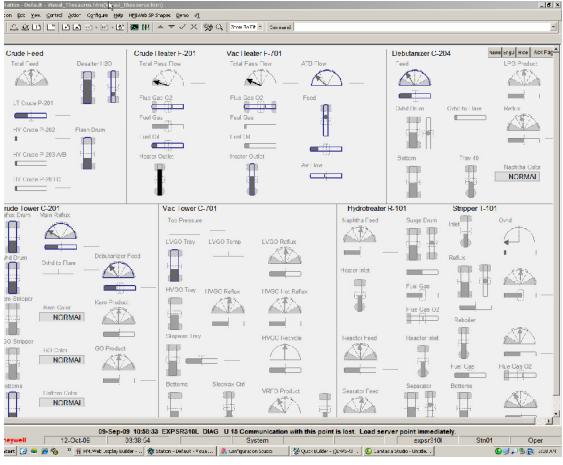
Number of correct flag matches made during the scenario

- Significant Main Effects
 - More flag matches during Low complexity scenarios (p < .004)
- NOTE: No differences between displays (p > .05)
 - Operators maintained equivalent primary task performance with both displays

Helping People Perform

Honeywell

Discussion


- Using the Functional Overview Display improved operator SA compared to the Schematic Display
 - Qualitative shapes and Functional arrangement together improved performance – but which is more impactful?
 - Subjective feedback from operators suggests shape design was the contributing factor to the performance improvement
 - Validates previous studies that show direct perception of process constraints (alarms, targets, setpoints) improves monitoring performance (see Burns & Hajdukiewicz, 2004 for review)
 - Performance improvement using Functional display despite more operator familiarity and experience with traditional schematic displays

Situation Awareness Performance						
	Schematic (S – L1)	Functional (F – L1)	Difference (%)			
Percentage of changes detected (Level 1 SA)	11.9%	28.8%	+16.9%			
Percentage Accuracy to Probes (Level 2 SA)	56.4%	62.8%	+6.4%			

Practically significant according to ASM member companies

Discussion

- Relatively higher performance impact using Functional Overview Displays for Low complexity scenarios
 - Functional display with qualitative shapes may become visually overwhelming for high complexity scenarios
 - Suggests room for additional design improvements such as:
 - Integrated shapes
 - Color/salience
 scheme adjustments
 - Different layout configurations

Limitations and Future Research

Limitations:

- Display arrangements were not equivalent (confounded)
 - Pragmatic considerations were the driving factor
- Realism of primary flag matching task
 - Provided experimental control and was used to increase workload
 - Did not show differential performance for displays so does not impact overall findings relative to SA performance improvement

• Future Research:

- Quantify impact of different display arrangements
 - Keep shapes constant
- Quantify impact of different display design methods
 - Traditional engineering practices vs. Cognitive Work Analysis practices
- Identify optimal shape design for different process variables
 - Temperature vs. Flow vs. Pressure vs. Level

- Thanks to George Gabaldon for his assistance in the overview display design process
- Thanks to the HFES reviewers for their insightful comments
- This study was funded by the ASM® Consortium, a Honeywell-led research and development consortium
 - Abnormal Situation Management and ASM are registered trademarks of Honeywell International, Inc.

Questions?

www.asmconsortium.org

www.honeywell.com

Human Centered Solutions

Helping People Perform

www.applyHCS.com