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Process monitoring within a refinery control room can be both daunting and listless. The workload of 

control room operators can fluctuate greatly over a short period of time. It would be ideal if systems could 

automatically detect these changes in workload so that both the computer system and those supervising are 

made aware of instances when an operator might be overloaded. While eye tracking has been shown to 

correlate well with workload, the process industry has yet to study this phenomenon. 48 control room 

operators from a major refinery participated within this experiment, where task complexity was varied 

within scenarios by controlling for the number of process deviations within a simulated crude process. It 

was found that both blink rate and pupil size could be used to track the cognitive load of operators over 

time. NASA TLX was also measured but it was not as sensitive as pupil size, as it did not capture a 

difference in scenario difficulty. 

 

 

INTRODUCTION 

Maintaining a steady state process is a primary objective 

of process control operators. This becomes especially critical 

for the energy industry as disasters could translate to financial 

losses, environmental damage, and even death. Nuclear power 

plants, such as the Chernobyl accident or the recent tsunami-

related event in Fukushima Japan, could have more world-

wide consequences. While the latter event could be arguably 

attributed to a natural disaster, the former was more 

specifically a result of poorly trained personnel. Whatever the 

cause, it was the design of the facility and the technology 

used, along with the human operators, that played a major role 

in each catastrophe. As human factors practitioners, we are 

interested in the specifics of how human operators interact 

with their workplace environment, and how we could 

continuously improve the current status quo. Much research 

has been done in the areas of improving interface design, team 

formation, and training (Patrick, James, & Ahmed, 2006). 

Much less research has been done on adaptive systems within 

process control. Cognitive-aware systems are those which 

allow the system to identify human processes, which in 

response could allow the system to adapt to the human 

(Bulling & Zander, 2014). Eye tracking technology has the 

potential to improve the human-machine system within the 

control room environment by potentially recognizing when a 

human is under unmanageable stress. 

 

Process Control 

 

During a process disturbance, an operator must quickly 

and reliably conduct a series of corrective measures to ensure 

that the process is stabilized. One of the primary methods of 

monitoring such process are making use of high level 

overview displays, which present the human operator with an 

abstract view of the entire process they are responsible for 

maintaining. This type of display may provide early indicators 

of unexpected deviations, which often present themselves 

within qualitative or quantitative indicators on the computer 

screen. If these go unnoticed, it may lead to unstable 

conditions upon which the operator is bombarded with 

warnings in the fashion of changing indicator colors and/or 

audible alarms. While one such deviation is often manageable, 

a multitude of them could bring the operator's workload to 

levels beyond human capability. Furthermore, our knowledge 

of individual differences tells us that people inherently behave 

within different capacities - yet systems are designed 

uniformly. It would be a tremendous benefit, to the operation, 

for the system to be aware of the current mental state of the 

human operator. Additionally, supervisors could be informed 

when an operator may be experiencing high levels of 

workload. 

 

Workload 

 

This proposal will look at how the previously mentioned 

eye tracking measures stack up against the commonly used 

subjective NASA Task Load Index (NASA TLX; Hart & 

Staveland, 1988). NASA TLX provides a good baseline 

because it is simply the measure which has been shown to 

provide a valid indication of workload (Hart, 2006). Other 

measures of workload (e.g., EEG, ECG, transcranial Doppler 

sonography, functional near infrared, eye tracking) have been 

shown to not necessarily correspond well with one another 

(Matthews, Reinerman-Jones, Barber, & Abich, 2014). 

However, implementing eye tracking in such an environment 

with table mounted trackers could be the most feasible without 

interrupting normal work operations. The other measures, 

including NASA TLX, require that the operator have a 

physical device attached to them or that they take time out of 

their day to respond to workload questionnaires. 

 

Eye Tracking 

 

Various eye tracking measures have been linked to 

measures of cognitive load. For instance, longer eye fixation 

durations can be an indicator of more difficulty in interpreting 

information that is being observed (e.g. Duchowski, 2007; 

Holmqvist et al., 2011; Just & Carpenter, 1976). Some 

researchers have used eye blinks to measure attention and 

tension (Bruneau, Sasse, & McCarthy, 2002). Higher blink 



rates, for example, could correlate with fatigue (Poole & Ball, 

2005). Cognitive workload has also been found to correlate 

with pupil size, where increasing size indicates higher 

processing demands (Beatty, 1982; Szulewski, Fernando, 

Baylis, & Howes, 2014). Saccade velocity has also been found 

to increase with workload (Bodala, Ke, Mir, Thakor, & Al-

Nashash, 2014). 

Applying eye tracking within process control simulation 

experiments is not new. For the nuclear power plant domain, 

Ha and Seong (2009) measured eye fixations to determine 

attention on important areas through an fixation-to-importance 

ratio (FIR). Their primary goal was to use an evaluation 

method to determine the difficulty in information search. 

Ikuma et al. (2014) used eye tracking to measure gaze within 

varying workload simulations of a virtual petrochemical 

process. Their use of eye tracking, however, was limited to 

locating where participants looked using areas of interest 

(AOI). While these sorts of studies provide tools for assisting 

in the development of good interfaces, they were not used as 

methods to measure operator performance in real-time. 

Furthermore, cognitive workload is not behavioral as directing 

visual attention is. 

Outside of process control, eye tracking has been used to 

infer cognitive workload in areas such as: aviation (Ahlstrom 

& Friedman-Berg, 2006; Hankins & Wilson, 1998; Wilson, 

2002), website analysis (Wang, Yang, Liu, Cao, & Ma, 2014), 

driving (Hwang, Yoon, Kim, & Kim, 2014; Palinko, Kun, 

Shyrokov, & Heeman, 2010; Savage, Potter, & Tatler, 2013), 

word processing and reading (Gwizdka & Zhang, 2015; Just & 

Carpenter, 1993), medical (Zheng et al., 2012), and robotic 

control/military applications (Breslow, Gartenberg, McCurry, 

& Trafton, 2014; Orden, Limbert, Makeig, & Jung, 2001). 

Most of these studies used eye blink frequency and pupil 

diameter variation as measures of cognitive workload. Hence, 

this study investigates these two forms of eye tracking 

measures. Note that neither of these are direct eye movement 

measures, which reduces the confounding effects (artifacts) 

within the data. 

 

 

METHOD 

An experiment was designed to measure the effect of 

presenting operators with three different visualizations of an 

overview display (Noah, Kim, Rothrock, & Tharanathan, 

2014). The primary objective of that experiment was to 

determine which display characteristics promote better overall 

performance and situation awareness in a simulated crude oil 

process. The main results of that study was that a surface chart 

display improved performance, while situation awareness did 

not differ significantly between the three displays. In the same 

experiment, eye tracking data was also collected for this 

analysis, as an extension to the study. 

While one factor varied the display type at three levels 

(surface chart, heat map, and visual thesaurus), each 

participant underwent two experimental trials with each a 

either low or high scenario complexity. Complexity was 

balanced so that half of the participants went from low-to-high 

and the other half went from high-to-low. Finally, the three 

display type conditions were between-subject. 

Subjective workload was measured by using NASA TLX 

for each, of two, experimental trials. Eye tracking data for 

both eyes was collected using a head mounted Arrington 

Research tracker at 30Hz throughout each trial. Measuring 

workload through eye tracking fits this experiment well as it 

considers exposure to various visualizations. 

The general procedure for the experiment were as 

follows. First, the participants signed a voluntary consent 

form. Approval for the study was granted by both the site's 

management and Abnormal Situation Management (ASM) 

Consortium, who provided the funds for the project. Next, 

standardized training was provided and a quiz was 

administered to ensure proper knowledge acquisition. This 

included both a questionnaire and a full practice session. The 

eye tracker was calibrated to each participant at the start of the 

practice session, and later re-calibrated prior to each 

experiment trial. Following each experiment trial, participants 

answered the NASA TLX questionnaire on a computer screen. 

A debriefing and short usability survey concluded the 

experiment. 

 

Tasks 

 

The primary task was to monitor and acknowledge any 

changes in state within the simulated crude process (using 

both monitors on the left in Figure 1). The only action 

required was to click on the gauges which changed. The 

visualizations used were developed to mimic actual overview 

displays being used in control rooms across the planet. The 

simulated scenarios were developed along with subject-matter 

experts so that the process deviations translated to actual 

progression of similar process within refinery operations. Each 

task lasted about 20 minutes. The simulated scenarios were set 

at 9 minutes in duration, with a set of situation awareness 

questions about half way through and NASA TLX questions at 

the end. The time to respond to questions was not restricted 

and varied between participants. The task always started off 

with 100% normal, steady-state operation. Low complexity 

scenarios contained an average of 28 abnormal events, and 

high contained an average of 47.  

In addition to the primary task, a secondary task required 

that participant manage an independent task (right monitor in 

Figure 1). The secondary task used the Multi-Attribute Task 

Battery (MATB). The reason for including the secondary task 

was to ensure a high enough load throughout the experiment. 

The difficulty level on the secondary task remained constant. 

See figure 1 for an image of the setup. The primary task made 

use to two 22" widescreen computer monitors (stacked on top 

of one another), and the secondary task made use of a 15" 

square monitor (which was placed immediately to the right). 

 



 
Figure 1. Experiment setup showing the overview displays 

(primary task) on the left and MATB (secondary task) on the 

right. 

 

Participants 

 

In sum, 48 control room operators were recruited from a 

major oil refinery and they participated in the process 

monitoring simulation tasks, 16 per display type. The mean 

age was 37.7. The range for age was 22-59. Experience levels 

were also recorded in terms of years of experience in the 

control room. The average was 7.5 years, ranging from 1 to 

34. 43 were male, and 5 were female.  

 

 

RESULTS 

The raw data had to be first cleaned and converted into 

fixations and saccades, from which scanpaths could be plotted. 

Figure 2 shows a sample of one participants' data. The circles 

represent fixations, with larger diameter circles corresponding 

to longer fixations. Overall, the NASA TLX data resulted in a 

significant difference between trials, F(1,42)=7.11, p=0.011, 

with higher workload in the first trial. 

 

 
Figure 2. Sample participant scanpath data overlayed on visual 

scene. 

 

Blinks were extracted from the raw data as artifacts, when 

the eye tracker could not locate the pupil due to closing of the 

eye lids. The total number of blinks was calculated within 60 

second time blocks. The average number of blinks for 

participants in these blocks can be seen in Figure 3. 

 
Figure 3. The average number of blinks per participant. Blinks 

were calculated within 60 second time blocks. 

 

Pupillometry is based on changes in pupil diameter 

through dilation, and/or constriction of the pupil. The eye 

tracker recorded estimates of width and height of each pupil at 

30Hz. The pupil size was calculated as the area of an ellipse: 

area = π * width * height. As both eyes behave similarly by 

reacting to stimuli under the same mechanisms, only one eye 

can be analyzed. In this analysis, the left eye us chosen for the 

analysis on pupil size. 

 

The size of pupils with respect to task complexity is 

shown in Figure 4. The plot shows average pupil size 

calculated every second, by using 30 consecutive data points. 

At 30 Hz, 30 data points equal to one second of task duration. 

The data was fitted in two ways. First, curves were fitted 

based on local polynomial regression using loess fitting, 

shown as the solid nonlinear lines. Second, linear lines were 

also fitted and shown as dotted lines. Analysis of covariance 

was conducted to determine if the two complexity levels 

differed. The linear fits for each complexity were statistically 

different, F(1,448)=705.94, p=0.000. 

 
Figure 4. The average pupil size over time for low (red) and 

high (blue) complexity. 

 

The size of pupils with respect to experimental trial is 

shown in Figure 5. Once again, this data was averaged every 

second, in 30 consecutive data points. The solid fitted lines 

represent the loess fitting curves, and the dotted lines represent 

linear fits. Analysis of covariance shows that the two trials 

differed statistically, F(1,448)=980.36, p=0.000. 



 
Figure 5. The average pupil size over time for trial 1 (red) and 

trial 2 (blue). 

 

 

DISCUSSION 

The first interesting finding is that blinks did not increase 

over time within each experimental scenario (Figure 3). The 

data showed that participants began each experiment in a high 

level of stress, perhaps indicating an orientation phase (Hasse 

& Bruder, 2014). While the scenarios started with no process 

deviations, more blinks occurred in the first 2-3 minutes, then 

steadied for the remainder of the time. However, around the 6-

minute marker, blinks had a sharp increase. This corresponds 

to the time when the simulation froze for the situation 

awareness questions. There were eight questions and it took 

participants several minutes to respond prior to continuing the 

simulation. What this indicates is that blinks could potentially 

provide insight into cognitive load for various stages of 

process monitoring. 

While physiological measures have not been found to 

correlate well with NASA TLX (Matthews et al., 2014), we 

found that both NASA TLX and pupil size corresponded to 

more workload within trial 1 (Figure 5). It is possible that this 

is evidence of a learning effect. However, performance data 

did not support a learning effect (Noah et al., 2014). It may be 

that participants became more familiar over time, but not to 

the point where it helped them perform better. Another finding 

was that higher complexity scenarios did show larger pupil 

sizes throughout the duration of the experiments (Figure 4). 

This is something that NASA TLX did not capture. Therefore, 

pupilometry shows to be more sensitive than subjective 

questionnaires. Finally, it can be seen that both blinks and 

pupil size data support the interpretation the workload 

decreased as the experiment progressed. 

There are several limitation to this study. While the use of 

blinks and pupil size help reduce confounding effects, having 

participants continuously switch visual attention between three 

computer monitors does present data analysis challenges. 

Further validation of these findings could be done within the 

process control domain. Another challenge to pupilometry is 

that pupil constriction can be attributed to many things. There 

are several recommended articles on this subject (Beatty & 

Kahneman, 1966; Granholm, Asarnow, Sarkin, & Dykes, 

1996; Granholm & Steinhauer, 2004; Muldner, 

Christopherson, Atkinson, & Burleson, 2009; Paivio & 

Simpson, 1966; Pomplun & Sunkara, 2003). 

 

 

CONCLUSIONS 

For a simulated process control task, it was found that 

measuring pupil size with eye tracking supports the ongoing 

effort to relate increasing pupil size to higher cognitive load. 

In addition, the frequency of blinks can potentially indicate an 

orientation phase and changes in cognitive demands. The main 

advantage to pupilometry and blink count is the ability to 

correspond with cognitive workload temporarily. This, in turn, 

should lend well to integrating eye tracking within adaptive 

systems for process control rooms of the future. 
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