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Abstract

This paper presents a method for process fault detection based on the integration of multiscale signal representa-
tion and scale-specific clustering-based diagnosis. Previous work by the authors has demonstrated the utility of our
multiscale detection scheme applied to linear projection-based methods such as PCA and Dynamic PCA. This work
further demonstrates its use in conjunction with a non-linear modeling method, namely Adaptive Resonance Theory-2.
The multiscale ART-2 (MSART-2) algorithm detects a process change when one or more wavelet coefficients violate
the similarity thresholds with respect to clusters of wavelet coefficients under normal process operation at that scale.
In contrast to most other multiresolution schemes, the present framework exploits clustering behavior of wavelet coeffi-
cients of multiple variables for the purpose of scale selection and feature extraction. By reconstructing the signal with
only the relevant scales, MSART-2 can automatically extract the signal feature representing the abnormal operation
under consideration. We provide illustrative examples as well as Monte Carlo bases for these claims via a comparative
performance analysis over several case studies. Comparison of average detection delays or run-lengths of MSART-2 with
those of ART-2 for a variety of processes with different statistical characteristics is provided. We also present compar-
ative results on real industrial case studies from a petrochemical process plant. Our results indicate that MSART-2,
as compared to ART-2, is a general approach that may be preferable for problems where it is necessary to detect all
changes drawn from processes of various statistical characteristics.
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I. INTRODUCTION

N an environment where most process maneuvers are automated, algorithms to detect and clas-

sify abnormal trends in process measurements are of critical importance from the point of view
of safe and economical plant operation. These algorithms use information extracted from previously
annotated process data for predicting, preferably in real time, the state of the process when only unan-
notated measurements are available. This task is referred to as fault diagnosis or anomaly detection
and isolation in the statistical process monitoring community. Clearly, one can draw close parallels to
the above objective from fields as diverse as e-commerce (fraud detection), network security (intrusion
detection), and wireless communication (signal detection). It is not surprising, then, that algorithms
designed for each of these varied applications often rely on the same repository of pattern recogni-
tion/statistical modeling methods, such as neural networks and PCA, for learning the characteristics
of the data. This work focuses on one such method, namely Adaptive Resonance Theory (ART), and
reports significant performance gains in terms of faster, noise-tolerant detection under the proposed
multiscale framework. The current work, however, is not specific to ART and has the potential to
benefit other parallel applications across different domains and modeling methods listed above.
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Fig. 1. Fault Detection for Industrial Processes

A. Clustering-based Fault Detection

Most real-world large-scale industrial processes, by their inherent nature, are not precisely defined
in the space of sensor measurements. Within a loosely defined region, any given process may follow
any of the several possible paths depending on a large number of known or unknown factors. There
may exist several such regions, possibly disjoint, because of factors such as various combinations of
input feed characteristics, changes in the desired nature of output, variations in the environmental
conditions, and so on (Figure 1a). Clustering-based models approximate these complex, multivariate
modes of operation as regions in sensor space as opposed to deriving a precise functional relationship
and are, thus, well suited for diagnosis of industrial processes [1][2]. Specifically, the ART family of
networks [3][4][5][6][7] includes some of the few clustering algorithms that explicitly address the issue
of stable adaptation and incremental learning with changing process behavior. Typical real world
processes often drift from one operating regime to the other, exploring previously unknown equilibria
in response to the ever-changing environment. When new information is available in terms of the
latest process data, an ART-based fault detector can choose to modify its current clusters or add new
clusters. This incremental modification takes place in a way which ensures that the network remains
stable as well as capable of adaptation to the changing process conditions. ART and ARTMAP-based
networks have been investigated for process modeling and diagnosis of multivariate chemical data by
several researchers such as Wienke and co-workers [8][9][10], Hopke and co-workers [11], as well as
Wang and co-workers [12], in addition to the previous work by the authors [13] (Figure 1b).

ART-based clustering algorithms are especially sensitive to noise because of the inherent feature
enhancement ability of ART coupled with the ability to remember rare events. The work by Frank
et. al. [14] studied the clustering performance of fuzzy ART and ART-2 in the presence of noise
and concluded that responsiveness to novel behavior can lead to non-optimal mapping because of the
uncertain distinction between “novelty” and “noise”. Thus, the properties of Adaptive Resonance
Theory that led to advantages in a noise-free environment do not necessarily offer similar benefits for
noisy mappings [15]. Several ART and ARTMAP variants have been proposed in the past to tackle this
issue. The PROBART network proposed by Marriot and Harrison [15] stores probabilistic information
about the node associations between ART layers to achieve a better performance in noisy mappings. A
modified ARTMAP by Lim and Harrison [16] was shown to approach Bayes optimal classification rates.
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Fig. 2. Multiresolution Analysis of a Typical Process Signal

The work by Srinivasa [17] proposed a PROBART variant that improved its generalization ability in
the context of high noise. Gaussian ARTMAP by Williamson [18] combined a Gaussian classifier and
an ARTMAP network by appropriately changing the definitions of ART choice and match functions.
Recently, Wang and co-workers [12] have proposed the use of wavelet feature extractors in place of the
original data preprocessing and feature enhancement units within ART-2.

The current work approaches the problem of noise in ART mappings of digital signals in a manner
fundamentally different than the research efforts discussed above. The proposed multiscale hierarchy
of ART networks does not modify the internals of ART-2 in any way. As a result, the benefits of our
mechanism are likely to be applicable even if any of the above ART variants were used as the basic unit
of the hierarchy. Indeed, previous applications of our multiscale hierarchy have illustrated significant
improvement in the performance of linear diagnosis methods based on PCA, Dynamic PCA, and a
univariate Neyman-Pearson (NP) classifier [19][20]. For an ideal case of a univariate Gaussian IID
signal, the NP classifier can be theoretically proven to yield higher detection accuracy over a broad
range of mean shifts if used with the proposed hierarchy [21]. This work combines the advantages of
ART networks such as the ability to model nonlinear, disjoint process mappings and the incremental
training ability with the benefits offered by multiresolution processing such as noise tolerance and
quicker as well as more robust detection of events.

B. Wavelet Decomposition and Change Detection

Wavelets and multiresolution signal analysis [22][23] have triggered developments in a range of
process systems engineering related domains such as trend extraction [24], process modeling [25],
sensor validation [26], noise reduction [27], etc. Advantages of these applications arise from the fact
that most naturally occurring process signals are, in effect, a combination of various signal components
corresponding to different events occurring at different localizations in time and frequency (Figures 2a
and 2b). For example, equipment degradation occurs over wide time intervals and low frequencies. In
contrast, sensor noise is spread across all frequencies and times. Events such as equipment failures are
sharp, sudden changes that are localized in time but display components across all frequencies. As a
result, specialized processing of the signal at different scales benefits tasks such as noise filtering and
diagnosis.



A large body of published literature has investigated the use of wavelets for various forms of change
detection. For example, the work by Crouse et. al. [28] proposed a wavelet-domain Hidden Markov
Model for univariate statistical signal processing. Swami, Sadler, and co-workers [29][30][31][32][33][34]
have presented multiscale methods for step detection and estimation. Other researchers [35][36] have
investigated wavelet-based shockwave detection, mean value jump detection, monitoring of mechanical
systems, and so on. These applications of multiresolution methods, including this work, are based on
selection of wavelet coefficients for the purpose of retaining as much of the underlying process signal-
and as little of the noise- as possible. Unlike these previous developments, however, the proposed
multiscale hierarchy exploits clusters of wavelet coefficients of multiple process variables to provide a
systematic way of selecting the most relevant scales. Because of fundamental functional relationships
such as process chemistry, energy and mass balances, measurements in multivariate processes are
correlated. If these intervariable correlations are linear, the resulting wavelet coefficients will be linearly
correlated as well [19]. Similarly, if the process variables are non-linearly correlated, the wavelet
coefficients will be non-linearly correlated. The current work proposes to take advantage of these
correlations and clustering behavior in the wavelet space for higher detection accuracy coupled with
noise reduction.

II. BACKGROUND
A. Adaptive Resonance Theory

ART-2 is an unsupervised clustering mechanism proposed by Carpenter and Grossberg [3]. Conven-
tional clustering algorithms were designed to be synthesized off-line and lack the mechanism to adapt
to dynamically evolving patterns. The objective of the analog ART-2 network is to “self-organize
stable pattern recognition codes in response to arbitrary sequences of input patterns”. It imparts
human-like memory attributes which result in significant information management and system main-
tenance benefits. Later developments in the ART family of algorithms, such as ARTMAP and Fuzzy
ARTMAP [4][5][6][7], extended the basic principles of adaptive resonance for the purpose of supervised
classification and function approximation.

For the purpose of diagnosis, the ART input space corresponds to the measurements of multiple
process variables available at any time. Functional dependencies and constraints across process vari-
ables can be modeled as clusters of training data in this space: the underlying assumption being that
abnormal behavior violates either these functional dependencies or the operating constraints. In either
case, measurement vectors corresponding to anomalous behavior lie outside the clusters of normal
data. When enough labeled data are available about a previously unknown abnormal operation, the
ART-2 cluster space can be incrementally updated with prototypes that characterize the new behavior.
Each cluster is associated with a particular process behavior in the form of a lookup table. The output
space is thus the discrete space of possible diagnoses or classes.

The similarity measure is an ART-2 distance metric used to quantify the extent of match between the
current measurement vector and the nearest cluster prototype. A similarity measure of 1 indicates an
exact match, whereas a similarity measure of 0 indicates no match. The vigilance parameter is a cut-off
such that a similarity measure greater than or equal to the vigilance is considered an acceptable match.
A similarity measure below the vigilance represents an “unknown” process condition. Implementation
of ART-2 for fault diagnosis (Whiteley and Davis) uses a variable number of hyper-spherical clusters
which are of fixed size. The lack of any orientation, incremental training, and overlapping coverage are
some of its features distinct from other clustering-based diagnosis algorithms (e.g., [2]). It has been
shown to be able to work consistently well over a wide range of simulated as well as real-life process
situations [13][37][1].

Due to the feature enhancement abilities of ART-2 clustering mechanism, however, an ART-2 based
fault detector is vulnerable to process noise. For example, consider a multivariate, linearly correlated,
noisy simulated process shown in Figure 3a. Abnormal operation was simulated as a mean shift added
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Fig. 3. An Example to Illustrate the Noise Sensitivity of the ART-2 Detector

to all four variables from time-steps 176 through 225. Only normal data were used for training, so
that the abnormal data were expected to be detected as an unknown event. Due to noise, however,
we can see that normal and abnormal operations were not clearly separated. An ART-2 network
was trained with independently generated normal data and was subjected to the test data. At each
time step, the ART-2 similarity measure between the current four-dimensional data vector and stored
cluster prototypes of normal data formed the basis for anomaly detection. For the given test data,
the ART-2 similarity measures versus time are shown (Figure 3b-top). A similarity measure below the
vigilance parameter indicated the absence of an acceptable winner cluster, and hence an “abnormal”
state (Detection Flag = 1), as shown in the bottom graph. A similarity measure above the vigilance
parameter indicated that a matching normal cluster was, indeed, found (Detection Flag = 0). We can
see that a lot of abnormal points were classified as normal (missed alarms). ART-2 diagnosis for such
a noisy mapping was, thus, not robust. There was one false flag.

The use of several types of noise reduction filters, including wavelet-based filters, presents itself as a
potential solution to the above noise vulnerability. This solution encounters the following two problems.
First, the noise reduction or filtering step is clearly separated from the multivariate diagnosis step. The
filtering step, thus, does not benefit from intervariable clustering behaviors that are typically present
in real-life multivariate processes (Figure 1a). Secondly, the diagnosis step is indifferent to which signal
components were retained in the filtering step. To work around these issues, our approach integrates
filtering and non-linear modeling for diagnosis. It also offers specialized processing according to the
scales of the signal components retained in the filtered signal.

B. Wawvelets

A well-known representation of a family of wavelet basis functions is:

1 t—u
Wall) = S0 ( : ) (1)

where s and u represent the dilation and translation parameters, respectively, and ¥(t) is the mother
wavelet.

If the translation parameter in a family of wavelets is discretized dyadically, u = 2™k, the wavelet
decomposition downsamples the coefficients at each scale. By convolution with the corresponding
filters, any signal can be decomposed into its contributions at multiple scales as a weighted sum of
dyadically discretized orthonormal wavelets.
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Fig. 4. Representation of Process Signals at Successive Levels of Approximation

L N N
y(t) = D Y dpn Wi (t) + D arePri(t) (2)
m=mo k=1 k=1

where, y is the measurement, mg is the finest scale, L is the coarsest scale, d,,; are the detailed
signal coefficients at scale m, and ar; are the scaled signal coefficients. We have typically chosen my
to be 1 for the examples studied in this paper.

Figure 4 illustrates the potential of wavelet decomposition for the task of fault detection of indus-
trial process signals. As stated earlier (Figure 2a and 2b), a typical process signal is composed of
a superimposition of several components such as sensor noise, disturbances, equipment degradation,
and so on. By projecting the signal at increasingly coarser levels of resolution, the wavelet transform
allows us to analyze each of these components at their respective frequencies and at the appropriate
locations in time. Figure 4 shows successive approximations of the signal from Figure 2a using Haar
wavelets and dyadic discretization. Equipment degradation can be observed at the lowest scaled signal
a,. Sudden events such as sensor and equipment failures can be observed across all detailed signals.
For instance, the equipment failure from time-steps 35 through 40 can be seen at d»[10], d3[5], and
dy4[3].

Decomposition of a signal by wavelets with dyadic downsampling implies that every measurement
cannot be decomposed as soon as it is obtained. This can cause a time delay in many on-line appli-
cations of wavelets such as on-line filtering and statistical process monitoring. This time delay can
be eliminated by decomposing the signal without downsampling, i.e., by discretizing the translation
parameter as u = k. The wavelet coefficients lose their orthonormality but permit the development
of truly on-line multiscale methods. Our earlier work [21] has shown that wavelet decomposition with
downsampling is more useful for monitoring of highly autocorrelated or non-stationary measurements,
whereas, decomposition without downsampling is useful for diagnosis of uncorrelated or mildly auto-
correlated measurements. In this work, we focus exclusively on transformations without downsampling
as the emphasis here is on quick, online detection of faults.

III. DESCRIPTION OF THE PROPOSED MSART-2 ALGORITHM

Figure 5 shows a schematic diagram of the MSART-2 approach for online anomaly detection. Given
the vigilance parameter p and the number of scales L, the following approach allows us to construct
the ART-2 feature maps that constitute the MSART-2 architecture. Let P be the number of process



variables in a multi-variate process. All the constituent networks of the MSART-2 scheme cluster the
data over a P-dimensional space of either the wavelet coefficients of these P variables on different
scales, or the signals reconstructed by various combinations of wavelet coefficients.

A. Training

Consider an N x P matrix Y %" of normal training data, where N is the number of training
samples. During the training phase, the following steps synthesize normal clusters and thus capture
the normal behavior of the process. We first apply the 1-D wavelet transform to each of the P variables

to obtain detailed signal coefficients d%?ti’g and the scaled signal coefficients atL’:‘ifg, where m=1,..., L,
t =2L . .,N, and p = 1,..., P. The illustration in Figure 5 used a wavelet decomposition with
L = 4. We then construct L + 1 training matrices D*" m = 1,... L, and AY" each of size

N —2L 41 x P, that contain the corresponding detailed and scaled signal coefficients. ART-2 clustering
is independently applied to each of these training matrices. Let the resulting cluster prototypes in the
wavelet domain be represented as ARTD,,, m = 1,..., L, and ART A, respectively. We thus have
L + 1 ART-2 networks that constitute the Scale Selection Layer of wavelet-domain detectors. For
example, Figure 5 shows a Scale Selection Layer composed of ARTD,, ARTD,, ARTD3, ARTD,,
and ART A,, which represent clusters of wavelet coefficients of normal data at the respective scales.

A crucial feature of the MSART-2 architecture is the reconstruction of the signal based on only
the relevant scales. By replacing all except the relevant scales by zeros before applying the inverse
wavelet transform, the reconstructed signal is made to conform to the nature of the change under
consideration in terms of its magnitude and rate of change. We thus filter out the unnecessary details
of the process from the point of view of the change under consideration. At any time t > 2L, the
signal can be reconstructed in 281! ways, depending on which of the L + 1 scales were selected for
reconstruction. For each of the 211! combinations, the coefficients corresponding to selected scales are
retained for reconstruction. The remaining coefficients are reduced to zeros. Inverse wavelet transform
is then applied. In this fashion, we generate training data matrices of reconstructed signals for each
of the 22+ combinations. Let these matrices be Y&en Yirain - Yiein each of which is of size
(N — 2L 4+ 1) x P. The data points for ¢ < 2F are not reconstructed since all the wavelet coefficients
are available only for t = 2%, ... N.

Finally, we apply ART-2 clustering independently to each of these reconstructed training matrices
to obtain cluster prototypes and associated weights in signal space filtered to retain the selected
combination of scales. These 2471 ART-2 networks, ARTY;, i = 1,..., 25 constitute the Diagnosis
Layer of detectors. In Figure 5, diagnoses of the 5 Scale Selection networks lead to 2° = 32 possible
ways in which the signal could be reconstructed. Correspondingly, the Diagnosis Layer in Figure 5 is
composed of 32 ART-2 networks, each of which represents clusters of normal data reconstructed in
one of the 32 possible ways.

When all scales are selected for reconstruction, the original signal matrix Y %" is exactly reproduced
for rows corresponding to ¢ > 2. The corresponding Diagnosis Layer network is the same as the
network used by Whiteley and Davis. Hence the time-domain ART-based detector is a special case of
the multiscale hierarchy presented in this work.

B. Online Testing

Having trained the Scale Selection Layer and Diagnosis Layer ART networks, we are now in a position
to carry out online detection. At each time ¢, the following steps allow us to detect abnormalities using
the proposed MSART-2 approach.

1. Apply wavelet transform to decompose the P-dimensional signal vector y'*s! into wavelet coefficients
diest, and af$’ ). Figure 5 shows a decomposition of a dyadic window of the test signal y;*' into
coefficients i, . . ., dif}* and afj". For each scale m, construct a P-dimensional vector d/¢%, comprising

of coefficients d/c%  with p = 1,..., P. This vector is presented as input to detector ARTD,, of the
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Fig. 5. The MSART-2 Architecture for Robust Fault Diagnosis

Scale Selection Layer. Similarly, construct the vector atﬁit to be presented to the detector ARTAy.
2. Each of these networks provides a diagnosis at the corresponding scale, based on whether the
similarity between the input vector and the stored normal cluster prototypes is above the vigilance
threshold. Only if the network ARTD,, provides an “abnormal” diagnosis, the coefficients dff;ff’p,
p = 1,..., P, are retained for reconstruction. Similarly, only if the network ART A} provides an
“abnormal” diagnosis, the coefficients a%ftfp are retained for reconstruction. For example, in Figure
5, the dy coefficient vector was deemed "normal” by ARTD,. Hence, prior to the application of the
inverse wavelet transform, the d, coefficients of all variables were reduced to zeros.

3. Apply inverse wavelet transform to the wavelet coefficients selected for reconstruction. The vector
yiest comprised of the reconstructed values for the P process variables, is presented as input to one
of the 2141 ARTY Diagnosis Layer detectors corresponding to the combination of scales selected for
reconstruction. For instance, the chosen Diagnosis Layer network in Figure 5 was trained on normal
data that was wavelet-decomposed and reconstructed without the dy coefficients. Thus, the selected
Diagnosis Layer network compares the reconstructed test signal at time ¢ with prototypes of normal
signals decomposed and reconstructed in exactly the same way. The resulting “normal” or ”abnormal”
diagnosis is provided to the user.

The added benefits of our method come at a cost of increased computation and storage requirements.
For a wavelet decomposition involving L scales, the worst-case computational requirement for MSART-
2 is approximately L + 2 times the computation for the ART-2 detector. The worst-case storage
requirement for MSART-2 is in fact approximately L + 1 4 25*! times the storage requirement for

ART-2.

IV. ILLUSTRATION OF THE MSART-2 ALGORITHM

In this section, we present three case studies that illustrate the advantages of our approach in more
detail. To facilitate a visual representation, let us limit ourselves to two variables, although the method
is general and can be applied to data with any number of variables. The three cases differ in terms of
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Fig. 6. A Bi-variate Process for Illustration of the MSART-2 Approach

noise and the extent of separation between normal and abnormal operation.

The experiments discussed in this paper use the same set of parameters for all the Scale Selection
Layer as well as Diagnosis Layer networks. All scales, thus, provide equally important information
about detection of an event. As a result, the algorithm performs well as a general detection algorithm
that can detect a broad range of events. With more specific information about the faults at hand,
one may want to tailor the MSART detection system to specific types of events by adjusting the ART
parameters at the relevant scales.

Figure 6a shows the normal behavior of the process considered in this illustration. The input vector
x(t) consisted of measurements of two nonlinearly correlated process variables x;(¢) and xo(¢). A bi-
variate problem was chosen for visual simplicity, although the algorithms considered are multi-variate.
Gaussian noise was superimposed on the data to simulate noisy conditions. Figure 6b illustrates the
non-linear correlation between these two process variables when plotted against each other. Simulated
faults included shifts of differing magnitudes among differing levels of noise, followed by resumption
of normal behavior. The test signals were subjected to online diagnoses by applying (1) an ART-2
detector, (2) a moving average (MA) filter followed by an ART-2 detector (referred to as ART-2+MA),
and (3) an MSART-2 detector. Comparative analyses brought out the strengths and weaknesses of
the current approach with respect to the basic ART-2 based detection/diagnosis.

Please note that the noisy mapping in this case is random and the exact diagnoses may differ for
different instantiations of the random process. We go on to establish the utility of the current approach
in a Monte Carlo fashion in the next section.

A. Case One: A Low-noise Process with a Clearly Separable Shift

Figure 7a shows the test data used for diagnosis in this section. As can be seen as the left side of
the outermost arm of the spiral, a shift was introduced to simulate abnormal behavior from time-step
501 to time-step 550. The number of scales, L, was chosen to be 4.

A.1 Scale Selection

The detection flags of the decomposed signals provide an insight into the mechanism of scale selection
in the MSART-2 architecture. Figure 7b shows the diagnoses by the resulting 5 Scale Selection Layer
networks for a part of the test signal. As explained earlier, the Scale Selection Layer subjects each
wavelet coefficient of the test data (dy, ..., ds, and a4 in this case) independently to an ART-2 network
trained exclusively on the corresponding coefficients of training normal data. In Figure 7b, a detection
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Fig. 7. Comparative Performance for Test Case One

flag of 0 indicates a “normal” diagnosis, whereas a detection flag of 1 implies an “abnormal” diagnosis.
The overall diagnosis, i.e., the diagnosis on the reconstructed signal (Figure 7b: bottom-most graph),
illustrates the effect of simultaneous selection of multiple scales. Figure 7b shows that when the
abnormal region started at time-step 501, the mean shift was detected immediately by ARTD;, the
network trained with finest detailed component of normal data. Scale Selection networks at the
subsequent (coarser) detailed scales, ARTDs, ..., ARTD,, detected the shift at subsequent points in
time. Since the level of detail became coarser at lower frequencies, the duration for which the shift
was detected increases from 1 time-step to 16 time-steps as we go from d; to dy.

Similarly, when the normal operation resumed at time-step 550, the transition was detected in the
order of the finest to the coarsest scale. Except for the transitional region, the fault was reflected
only in the residual signal (a4) for most parts. The residual signal is equivalent to that generated
after applying 16 tap moving average filter, and hence it is less sensitive to noise than the original
time-domain signal. However, it continued to report the fault for roughly up to 16 time-steps after
the fault was over (Figure 7b: fifth plot from the top).

A.2 Reconstruction and Overall Diagnosis

Based on the outcomes of the Scale Selection Layer networks, a reconstructed signal was appropri-
ately generated. For example, at time-step 551 in Figure 7b, only the networks ARTD; and ART A,
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reported a non-normal operation. Hence, the reconstructed signal at time-step 551 was generated by
applying the inverse wavelet transform with all other coefficients, except d; and a4, replaced by zeros.
Similarly, at time-step 556, the reconstructed signal was generated by applying the inverse wavelet
transform after retaining only the coefficients ds, d4, and a4, and replacing all other coefficients by
zeros. This reconstructed signal was then subjected to an ART-2 network from the Diagnosis Layer.
At each time-step, of the 32 Diagnosis Layer networks, the network trained on data generated by car-
rying the same reconstruction on normal data was chosen. The detection flag of the Diagnosis Layer
network chosen at each time-step are plotted against time in the bottom-most graph.

The last scaled signal (a4) was the only coefficient selected to reconstruct the signal for time-steps
509 through 550 (Figure 7b), because only ART A, detected the fault in this time interval. The
reconstructed signal was thus a scalar multiple of a4, implying a consistent detection of sustained faults
and less false alarms. Beyond time-step 550, however, multiple scales were selected for reconstruction.
Since the transition at time-step 550 was negative, i.e. from a positive shift to no shift, the scales d;
through d, tend to neutralize the continuing positive deviation of the residual a4 due to filter lag. As
a result, the diagnosis based on the reconstructed signal (bottom-nost graph) did not lead to as many
false alarms following the resumption of a normal state as the diagnosis based solely on a4 (4" graph
from the top). The reconstruction operation is, thus, crucial for avoiding false flags at the end of the
abnormal operation and at the same time maintain consistent detection of sustained shifts.

A.3 Analysis

The utility of the MSART-2 approach over ART-2 with or without moving average filtering is
seen from Figures 7c and 7d. Figure 7c shows the similarity measures, and the associated vigilance
parameters, for the current test data using ART-2 and MSART-2. A similarity measure below the
vigilance parameter (solid horizontal line) indicates an “abnormal” diagnosis. While both ART-2 and
MSART-2 detected the fault for its entire duration, the multiscale approach managed to achieve a
larger separation between the normal and faulty behavior without as many false alarms (Figure 7c).

Figure 7d shows the detection flags of three fault detectors: an ART-2 detector, an MSART-2
detector with a 16 tap wavelet filter, and an ART-2 detector that uses a 16 tap moving average
filter for noise removal. The ART-2 detection performance (top-most graph) reiterates the fact that
ART-2 based diagnosis without any preprocessing is prone to noise and hence false alarms. MA
smoothening filter achieves reduction in noise, and hence reduction in false alarms, during continued
normal operation (bottom-most graph). However, it did not detect the fault immediately (time-step
501) and it lead to a set of false alarms immediately following the malfunction (time-step 550). The
MSART-2 approach (middle graph) was successful in reducing both of these disadvantages by focusing
on only the smoothened (a;) component of the signal during sustained shift, and a combination of
relevant scales during the transitional phases.

B. Case Two: A Low-noise Process with a Narrowly Separable Shift

We now present a case where the faulty data were narrowly separated from the normal data by
changing the magnitude of the shift (Figure 8a). The shift lasted for time-steps 501 through 550,
similar to the earlier case. Towards the end, the shifted data completely overlapped with the other
arm of the spiral, known to be normal.

Figures 8b through 8d illustrate the performance of MSART-2 relative to that of ART-2 with or
without MA filtering. The individual outcomes of the Scale Selection Layer networks were similar to
Case One. Towards the end of faulty operation (time-steps 545 through 550), due to complete overlap
of shifted data and another arm of the normal spiral, none of the Scale Selection Layer networks
detected the fault. The sudden shift back to normal, however, was detected clearly (time-steps 551
and 552).

Figure 8c shows the similarity measures for abnormal operation for ART-2 and MSART-2. When



12

1 L T T T

= 1 B
v X747 Diagnosis for dl /\
e
09 % 7 0 !
450 500 550 600
0.8 A b ir . . ‘ ‘ 1
‘i\q Diagnosis for d2 /_\ /_\
07F . 0 ) )
A 450 500 550 600
% 1F ' ' R
0.6 X Diagnosis for d3 /_\
) .4 0 L L
L051 Aa 450 500 550 600
b T T
1F ]
04 Diagnosis for d4
0 L L
03 . | 411510 500 550 e})o
Diagnosis for ¢
= 4
0.2F 0 : -
450 500 550 600
0.1 1r ‘ ‘ 1
Overall Diagnosis
0 . . I I 0 | |
0 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1 450 500 550 600
Xy Time
(a) Simulated Abnormal Condition for Case Two (b) Diagnoses of Decomposed Signals
L |
'K 3 g
LV O T P T s
o M ¥ ¥ S
g 3
20.9999 i &
s So
20,9999 i
g 450 500 550 600
E oo0es - B Time
0.9998 - B
0.9997 T
450 500 550 600 <
Time %
o
1 0
1 MI 450 500 550 600
o Time .
& 0.9999 - B .l — |
= g
>0.9999 B o
£ c
E 0.9998 B 2
@ 2
0.9998 B - J

0.9997
450 500 550 600 450 500 550 600

Time Time

(c) ART-2 and MSART-2 Measures of Similarity ~ (d) ART-2 and MSART-2 Detection Performances

Fig. 8. Comparative Performance for Test Case Two

compared to Case One (Figure 7c, top graph), ART-2 can be observed to achieve considerably less
separation between the normal and the abnormal operations in terms of the similarity measure (Figure
8¢, top graph). Similar reduction in the extent of separation is seen with MSART-2 as well (Figures 7c¢
and 8¢, bottom graphs), although MSART-2 continued to outperform ART-2. The similarity measure
for MSART-2 remained well below the vigilance for most parts. Towards the end of the abnormal
operation, close match of the test and normal data affected the similarity measure.

As can be seen from the diagnoses reported in Figure 8d, ART-2 did not detect the fault consistently
because of the smaller distinction between normal and abnormal data with respect to the extent of
normal noise. Use of the MA filter alleviated the chattering and also reduced the number of false
alarms during sustained normal behavior. This added advantage, however, came at the cost of delay
in detecting the resumption of normal operation at time-step 551. The MSART-2 approach, similar to
Case One, successfully managed to reduce the chattering as well as the inaccurate classification at the
transitional regions. For Case Two, MSART-2 can thus be seen to provide quicker and more consistent
detection than both ART-2 and ART-24+MA in spite of the narrow separation between abnormal and
normal process operation.



13

Fig. 9. Variable Correlations Under Normal Conditions for Case Three

C. Case Three: A High-noise Process

In this section, we analyze the effect of multiscale architecture on anomaly detection in the presence
of large extent of noise. The training and testing data used for this case are provided in Figures 9
and 10a. Similar to Case One, a shift was simulated from time-step 501 through 550, although it is
difficult to visually detect the shift because of the presence of more noise.

In contrast with the earlier cases, the high noise in this case hampered the detection of the transient
phases in finer scales. Analysis of the decomposed scales (Figure 10b) shows that the two finest ART-2
detectors (dy and dy) did not detect the shift at all, unlike the earlier cases. The overall diagnosis was
based on only the coarsest scaled signal, a4, for most parts. Scales d; and d; detected the transition
back to normal with the expected delay. This selection of multiple scales for reconstruction reduced, to
a small extent, the lagged alarm at the resumption of normal operation. Figures 10c and 10d compare
ART-2 and MSART-2 detectors for this test case. The similarity measure plot (Figure 10c¢, top graph)
shows that ART-2 was unable to separate the normal and abnormal process operation. Thus, the
ART-2 detector led to many missed and false alarms (Figure 10d, top graph). The detection flag for
MSART-2 closely resembled that for ART-2+MA. Both detectors detected the transition away from
normal and resumption of normal operation at a lag approximately equal to the width of the filter
used (16 in this case).

Because of the presence of high noise for Case Three, it is not surprising that the ART-24+MA
approach worked better than ART-2. The close resemblance of MSART-2 and ART-24+MA for this
test case attests to our claim that the multiscale detection approach conforms to the best scale for the
fault at hand.

These three representative cases illustrate that the multiscale approach is a generic approach that
works well on various different changes. On the other hand, single-scale methods such as ART-2 with
and without moving average filter work best only for specific situations. For example, the unfiltered
ART-2-based approach works best only for low noise mappings (or large shifts) with clearly separated
normal and abnormal modes of operation. Similarly, the moving average based approach works better
for very noisy mappings (or small shifts).
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V. AVERAGE RUN-LENGTH PERFORMANCE ANALYSIS

Having presented illustrations that bring out the strengths of the proposed MSART-2 architecture,
we now provide a statistically sound comparative performance analysis via Monte Carlo simulations on
three types of processes. For each of the problems discussed below, mean shifts of varying magnitudes
were superimposed on the normal data. The fault detection technique under investigation was then
applied. The number of time-steps taken before the fault was detected for the first time, referred to as
run-length, is noted for each algorithm. Run-lengths may vary in different instances of the random
process for the same shift size and the same detection mechanism. The average run-length (ARL),
computed across multiple instances of the random process, was tabulated against each magnitude
of mean shift for each detection algorithm. When the magnitude of shift is zero, the corresponding
ARL value is indicative of the false alarm rate of the detection technique and is referred to as the
in-control run-length. For the same in-control run-length, it is desirable to have the lowest possible
ARL values for non-zero mean shifts. This mechanism provides a standard way of comparing the
relative performance of different monitoring techniques [38]. When plotted against the magnitude of
the shift, the ARL curve is expected to be non-increasing and typically converges to 1 as the magnitude
of shift tends to infinity.

In the experiments presented in the following sections, the vigilance for ART-2 was varied for a fixed
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vigilance parameter of MSART-2, until the in-control run-lengths matched. We can then compare the
MSART-2 and ART-2 detection performance, while keeping the average false alarm rate equal for both
detectors, in a Monte Carlo fashion. Since repeated experimentation is required to calculate ARLs,
the MSART-2 detector was limited to the minimum level of wavelet decomposition (i.e., L = 1) to
reduce computational time. For higher levels of wavelet decomposition, the difference between ART-2
and MSART-2 performances will be even more significant.

A. A Uniwvariate Process

In this section, we consider the following simple univariate process model:
z(t) = N(0,1) (3)

where N(0,1) is the output of an IID Gaussian random number generator with zero mean and unit
variance and x(t) is the process under measurement. Process data were normalized so as to lie between
the range 0 to 1 as required by ART-2. A data set of 1000 samples was generated for this process and
used for training the ART-2 and MSART-2 detectors.

To generate the ARL curves, shifts of varying magnitudes were introduced at ¢ = 0. For subsequent
time-steps, simulated abnormal data were subjected to diagnosis by the algorithm under investigation
(ART-2 or MSART-2), and time-step at which the shift was first detected (run-length) was recorded
for each magnitude of shift for both detection algorithms. This process was repeated for 1000 instances
of the random process and the run-lengths were averaged for each shift across these 1000 simulations.

The ARL curves for ART-2 and MSART?2 are provided as Figure 11. We can see that for a wide range
of shift magnitudes, MSART-2 detects the shift with smaller average run-lengths. For small shifts,
the process noise hampers the ability of ART-2 to consistently detect the shift. Thus, the multiscale
architecture successfully improves on detection abilities of ART-2 without introducing significant delay.
For large shifts, however, ART-2 is seen to perform slightly better as the shift is easily separable from
the inherent noise in the mapping.

B. A Multivariate, Linearly Correlated Process

Consider the following linear multi-variate process:

z1(t) = N(0,1) (4)
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5 = N(0,1) 5)

z3(t) = A (6)
. xl(t) — xQ(t)

z4(t) = B (7)

vilt) = i) +e(t) (8)

where z;(t),i = 1,...,4 are linearly correlated process variables under measurement. Simulated IID
Gaussian noise, €;(t), of mean zero and standard deviation of 0.2 was superimposed on each variable
to generate the measurements y;(t). Process data were normalized so as to lie between the range 0 to
1. Similar to the univariate process, a data-set of 1000 measurement vectors was generated and used
for training the ART-2 and MSART-2 detectors.

Shifts were introduced to y;(¢) at ¢ = 0, with the magnitudes varying as multiples of the standard
deviation of €;(t). The linear correlation across the process variables is thus violated. In a manner
similar to the univariate process above, ARL curves were generated and are presented in Figure 12.
Again, we observe that MSART-2 outperformed ART-2 for a wide range of shifts. Shifts of a given
magnitude are applied across all process variables, and hence shifts are detected earlier (lower run-
lengths) when compared to the univariate process (Figure 11). We observe that MSART-2 performs
better than ART-2, except for large shifts when abnormal operation is well-separated from normal
operation.

C. A Multivariate, Nonlinearly Correlated Process

We now present the ARL results for a non-linear spiral process similar to the one used for Section
3.

r(t) = r(t—1)—0.001 9)
0(t) = 6(t—1)+2xm*0.006 (10)
zi(t) = 7(t)* cos(0(t)) (11)
mo(t) = r(t)* sin(0(t)) (12)
yilt) = wi(t) +€(t) (13)
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The ARL results presented in Figure 13 show that, similar to the earlier results, the multiscale
architecture is observed to improve the detection performance of ART-2 in noisy mappings (small
shifts). Since the ARL curves are generated by averaging the run-lengths over a 1000 simulations,
these results validate the illustrations provided in Section 4. When compared to Figure 12, the reduced
difference between the ARL curves can be attributed to the lower number of variables as well as the
nonlinear nature of the process.

The ARL curves presented in this section confirm the utility of MSART-2 over ART-2 as established
in Section 4. By exploiting wavelet-domain clusters, we see that MSART-2 can detect small shifts with
smaller detection delays when compared with ART-2.

VI. INDUSTRIAL CASE STUDIES

In this section, we present two univariate examples taken from sensor readings of a real large-scale
petrochemical process. As claimed earlier, deviations from normality in real processes can be slow or
fast. In addition, they may differ in the extent of noise, and random and/or deterministic nature of the
change. We have chosen two representative process changes that exhibit these different characteristics.
For each example case, ART-2, MSART-2, and ART-24+MA were trained with the same training data
and same training parameters. Simulated to the illustration from Section 3, the objective is to detect
the deviations away from normality as soon as possible with the minimum number of both missed and
false alarms. The results presented below support our claim that MSART-2 automatically conforms
to the nature of the event at hand and hence performs well as a general detection mechanism.

A. FEzample 1: Drier Cooling

Drier cooling is a typical “unusual” pattern in petrochemical processes where the coolant flow rate
increases beyond the range of normal operation in response to the overheated unit. Figures 14a and
14b show the process data under normal and drier cooling conditions. With respect to the magnitude
of the event, normal data are seen to be nearly of a constant mean.

Since the overall magnitude of the change is large compared to the extent of noise in the process,
all three methods under investigation were expected to perform identically except for the transition
phases. The onset of the deviation, as well as the return to normality, can be seen to be slow developing
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(relative to the window of 16 time-steps used in the MA and wavelet filters) and deterministic trends.
Hence, the delay introduced by the MA filter was not significant with respect to the pace of change
in the process signal. ART-24+MA was expected to have better detection accuracy, in the transient
regions, than ART-2 because noise reduction capabilities of the MA filter outweighed the delay it
introduced. This observation is reflected in the results presented in Figure 15.

The test data from Figure 14b were subjected to ART-2, MSART-2, and ART-2+MA detectors
trained on the normal data from Figure 14a. After the onset of the event at time-step 100, all three
methods detected the event at approximately equal times and continued to detect it consistently.
Towards the end of the event, however, the ART-2 detector missed approximately 10 genuine alarms
more than the ART-2++MA and MSART-2 detectors. The MA filter reduced the noise in the data. On
the other hand, due to the slow pace of the onset and end, the filter did not cause a significant lag.
These factors contributed to the better performance of ART-2+MA over ART-2. It can be seen that
MSART-2 performance was equivalent to that of ART-2+MA because it automatically selected the
low-resolution scales for this slow-paced deterministic event. MSART-2, thus, successfully adapted to
the slow, deterministic nature of the change.

B. Ezample 2: Sensor Malfunction due to Oil Accumulation

Redundant sensors are often used for critical measurements for the detection of faulty sensor oper-
ation. Failure of any one of the redundant sensors is typically diagnosed by increased magnitude of
the difference between the sensor readings. In this example, we present an occurrence of sensor failure
due to oil accumulation. The difference between a faulty sensor and its coupled redundant sensor is
shown in Figure 16a. Under normal conditions, the difference was seen to be random and nearly zero
mean (top graph). In the neighborhood of time-step 720 in the test data (bottom graph), oil began to
accumulate in the actuator of one of the sensors, causing it to report erroneous readings. This error can
be seen to have a nearly zero-mean, stochastic component in the beginning and a strong deterministic
component after time-step 805. The event ended with a sudden return to normality when the cause
of the sensor failure was eliminated by a human operator (time-step 826).

Since the MA filter was set to calculate the average over a window of 16 consecutive time-steps,
we expected the ART-2+MA to be ineffective in detecting the initial zero-mean stochastic part of
the failure pattern. Also, in this case, the return to normality was a sudden, sharp change of large
magnitude. Due to the change in question taking place over a time-span much smaller than the
averaging window, we expected the ART-2+MA to result in a large number of false alarms immediately
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after the end of the sensor failure. Indeed, we find that ART-2 detector resulted in a smaller number
of false flags and a smaller number of missed flags for this event, when compared to the ART-2-+MA
detector (Figure 16b). Similar to figure 15, we observe that MSART-2 conforms to the scale of the
change under consideration and mimics the best performance for the event at hand.

VII. CONCLUSION

Previous work by the authors established ART-2 as a mechanism for efficiently and adaptively
capturing linear and non-linear mappings between process variables for the purpose of fault diagnosis
and sensor trend analysis. The multiscale architecture proposed in this work was shown to significantly
enhance the range of applicability of the ART-2-based diagnosis algorithm. Process malfunctions
naturally occur across multiple scales. Single scale approaches, which can be shown to be special
cases of the proposed scheme, are often limited to specific types of faulty operation depending on
their scales. For example, ART-2 without any filtering, a finest scale detector, is best for detection
only in cases where the shifts are large, the changes are sudden, or the event is stochastic. Similarly,



20

ART-2 with moving average filtering, a coarsest scale detector, is best for small shifts, gradual changes,
and deterministic events. Our approach integrates scale selection and clustering-based diagnosis. The
results presented in this paper show that MSART-2 is a general detection algorithm that chooses the
scale most appropriate for the malfunction at hand, and hence it delivers a good performance for noisy
events with a wide range of shift magnitudes and paces.
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